首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Flocculosin and ustilagic acid (UA), two highly similar antifungal cellobiose lipids, are respectively produced by Pseudozyma flocculosa, a biocontrol agent, and Ustilago maydis, a plant pathogen. Both glycolipids contain a short-chain fatty acid hydroxylated at the β position but differ in the long fatty acid, which is hydroxylated at the α position in UA and at the β position in flocculosin. In both organisms, the biosynthesis genes are arranged in large clusters. The functions of most genes have already been characterized, but those of the P. flocculosa fhd1 gene and its homolog from U. maydis, uhd1, have remained undefined. The deduced amino acid sequences of these genes show homology to those of short-chain dehydrogenases and reductases (SDR). We disrupted the uhd1 gene in U. maydis and analyzed the secreted UA. uhd1 deletion strains produced UA lacking the β-hydroxyl group of the short-chain fatty acid. To analyze the function of P. flocculosa Fhd1, the corresponding gene was used to complement U. maydis Δuhd1 mutants. Fhd1 was able to restore wild-type UA production, indicating that Fhd1 is responsible for β hydroxylation of the flocculosin short-chain fatty acid. We also investigated a P. flocculosa homolog of the U. maydis long-chain fatty-acid alpha hydroxylase Ahd1. The P. flocculosa ahd1 gene, which does not reside in the flocculosin gene cluster, was introduced into U. maydis Δahd1 mutant strains. P. flocculosa Ahd1 neither complemented the U. maydis Δahd1 phenotype nor resulted in the production of β-hydroxylated UA. This suggests that P. flocculosa Ahd1 is not involved in flocculosin hydroxylation.  相似文献   

2.
Flocculosin is an antifungal glycolipid produced by the biocontrol fungus Pseudozyma flocculosa. It consists of cellobiose, O‐glycosidically linked to 3,15,16‐trihydroxypalmitic acid. The sugar moiety is acylated with 2‐hydroxy‐octanoic acid and acetylated at two positions. Here we describe a gene cluster comprising 11 genes that are necessary for the biosynthesis of flocculosin. We compared the cluster with the biosynthesis gene cluster for the highly similar glycolipid ustilagic acid (UA) produced by the phytopathogenic fungus Ustilago maydis. In contrast to the cluster of U. maydis, the flocculosin biosynthesis cluster contains an additional gene encoding an acetyl‐transferase and is lacking a gene homologous to the α‐hydroxylase Ahd1 necessary for UA hydroxylation. The functions of three acyl/acetyl‐transferase genes (Fat1, Fat2 and Fat3) including the additional acetyl‐transferase were studied by complementing the corresponding U. maydis mutants. While P. flocculosa Fat1 and Fat3 are homologous to Uat1 in U. maydis, Fat2 shares 64% identity to Uat2, a protein involved in UA biosynthesis but with so far unknown function. By genetic and mass spectrometric analysis, we show that Uat2 and Fat2 are necessary for acetylation of the corresponding glycolipid. These results bring unique insights into the biocontrol properties of P. flocculosa and opportunities for enhancing its activity.  相似文献   

3.
The grey mould fungus Botrytis cinerea produces two major phytotoxins, the sesquiterpene botrydial, for which the biosynthesis gene cluster has been characterized previously, and the polyketide botcinic acid. We have identified two polyketide synthase (PKS) encoding genes, BcPKS6 and BcPKS9, that are up-regulated during tomato leaf infection. Gene inactivation and analysis of the secondary metabolite spectra of several independent mutants demonstrated that both BcPKS6 and BcPKS9 are key enzymes for botcinic acid biosynthesis. We showed that BcPKS6 and BcPKS9 genes, renamed BcBOA6 and BcBO9 (for B. cinerea botcinic acid biosynthesis), are located at different genomic loci, each being adjacent to other putative botcinic acid biosynthetic genes, named BcBOA1 to BcBOA17. Putative orthologues of BcBOA genes are present in the closely related fungus Sclerotinia sclerotiorum, but the cluster organization is not conserved between the two species. As for the botrydial biosynthesis genes, the expression of BcBOA genes is co-regulated by the Gα subunit BCG1 during both in vitro and in planta growth. The loss of botcinic acid production does not affect virulence on bean and tomato leaves. However, double mutants that do not produce botcinic acid or botrydial (bcpks6Δbcbot2Δ) exhibit markedly reduced virulence. Hence, a redundant role of botrydial and botcinic acid in the virulence of B. cinerea has been demonstrated.  相似文献   

4.
The dimorphic basidiomycete Ustilago maydis produces large amounts of surface-active compounds under conditions of nitrogen starvation. These biosurfactants consist of derivatives of two classes of amphipathic glycolipids. Ustilagic acids are cellobiose lipids in which the disaccharide is O-glycosidically linked to 15,16-dihydroxyhexadecanoic acid. Ustilipids are mannosylerythritol lipids derived from acylated beta-d-mannopyranosyl-d-erythritol. Whereas the chemical structure of these biosurfactants has been determined, the genetic basis for their biosynthesis and regulation is largely unknown. Here we report the first identification of two genes, emt1 and cyp1, that are essential for the production of fungal extracellular glycolipids. emt1 is required for mannosylerythritol lipid production and codes for a protein with similarity to prokaryotic glycosyltransferases involved in the biosynthesis of macrolide antibiotics. We suggest that Emt1 catalyzes the synthesis of mannosyl-d-erythritol by transfer of GDP-mannose. Deletion of the gene cyp1 resulted in complete loss of ustilagic acid production. Cyp1 encodes a cytochrome P450 monooxygenase which is highly related to a family of plant fatty acid hydroxylases. Therefore we assume that Cyp1 is directly involved in the biosynthesis of the unusual 15,16-dihydroxyhexadecanoic acid. We could show that mannosylerythritol lipid production is responsible for hemolytic activity on blood agar, whereas ustilagic acid secretion is required for long-range pheromone recognition. The mutants described here allow for the first time a genetic analysis of glycolipid production in fungi.  相似文献   

5.
6.
Infection of maize (Zea mays) plants with the smut fungus Ustilago maydis is characterized by excessive host tumour formation. U. maydis is able to produce indole-3-acetic acid (IAA) efficiently from tryptophan. To assess a possible connection to the induction of host tumours, we investigated the pathways leading to fungal IAA biosynthesis. Besides the previously identified iad1 gene, we identified a second indole-3-acetaldehyde dehydrogenase gene, iad2. Deltaiad1Deltaiad2 mutants were blocked in the conversion of both indole-3-acetaldehyde and tryptamine to IAA, although the reduction in IAA formation from tryptophan was not significantly different from Deltaiad1 mutants. To assess an influence of indole-3-pyruvic acid on IAA formation, we deleted the aromatic amino acid aminotransferase genes tam1 and tam2 in Deltaiad1Deltaiad2 mutants. This revealed a further reduction in IAA levels by five- and tenfold in mutant strains harbouring theDeltatam1 andDeltatam1Deltatam2 deletions, respectively. This illustrates that indole-3-pyruvic acid serves as an efficient precursor for IAA formation in U. maydis. Interestingly, the rise in host IAA levels upon U. maydis infection was significantly reduced in tissue infected with Deltaiad1Deltaiad2Deltatam1 orDeltaiad1Deltaiad2Deltatam1Deltatam2 mutants, whereas induction of tumours was not compromised. Together, these results indicate that fungal IAA production critically contributes to IAA levels in infected tissue, but this is apparently not important for triggering host tumour formation.  相似文献   

7.
The Ustilaginaceae family of smut fungi, especially Ustilago maydis, gained biotechnological interest over the last years, amongst others due to its ability to naturally produce the versatile bio-based building block itaconate. Along with itaconate, U. maydis also produces 2-hydroxyparaconate. The latter was proposed to be derived from itaconate, but the underlying biochemistry and associated genes were thus far unknown. Here, we confirm that 2-hydroxyparaconate is a secondary metabolite of U. maydis and propose an extension of U. maydis’ itaconate pathway from itaconate to 2-hydroxyparaconate. This conversion is catalyzed by the P450 monooxygenase Cyp3, encoded by cyp3, a gene, which is adjacent to the itaconate gene cluster of U. maydis. By deletion of cyp3 and simultaneous overexpression of the gene cluster regulator ria1, it was possible to generate an itaconate hyper producer strain, which produced up to 4.5–fold more itaconate in comparison to the wildtype without the by-product 2-hydroxyparaconate. By adjusting culture conditions in controlled pulsed fed-batch fermentations, a product to substrate yield of 67% of the theoretical maximum was achieved. In all, the titer, rate and yield of itaconate produced by U. maydis was considerably increased, thus contributing to the industrial application of this unicellular fungus for the biotechnological production of this valuable biomass derived chemical.  相似文献   

8.
Many microorganisms produce surface-active substances that enhance the availability of water-insoluble substrates. Although many of these biosurfactants have interesting potential applications, very little is known about their biosynthesis. The basidiomycetous fungus Ustilago maydis secretes large amounts of mannosylerythritol lipids (MELs) under conditions of nitrogen starvation. We recently described a putative glycosyltransferase, Emt1, which is essential for MEL biosynthesis and whose expression is strongly induced by nitrogen limitation. We used DNA microarray analysis to identify additional genes involved in MEL biosynthesis. Here we show that emt1 is part of a gene cluster which comprises five open reading frames. Three of the newly identified proteins, Mac1, Mac2, and Mat1, contain short sequence motifs characteristic for acyl- and acetyltransferases. Mutational analysis revealed that Mac1 and Mac2 are essential for MEL production, which suggests that they are involved in the acylation of mannosylerythritol. Deletion of mat1 resulted in the secretion of completely deacetylated MELs, as determined by mass spectrometry. We overexpressed Mat1 in Escherichia coli and demonstrated that this enzyme acts as an acetyl coenzyme A-dependent acetyltransferase. Remarkably, Mat1 displays relaxed regioselectivity and is able to acetylate mannosylerythritol at both the C-4 and C-6 hydroxyl groups. Based on these results, we propose a biosynthesis pathway for the generation of mannosylerythritol lipids in U. maydis.  相似文献   

9.
10.
11.
The dimorphic phytopathogenic fungus Ustilago maydis encounters different environments during its life cycle. As free-living unicellular haploid cell, the fungus must compete with other microorganisms for space and nutrients. As a pathogen, it also has to withstand the defense reactions of its host plant corn and to subvert the plant metabolism for its own purposes. During these interactions small molecules produced by the fungus serve important functions in the communication with its host and other organisms. The genome sequence of U. maydis makes it possible to deduce the full inventory of enzymatic functions that are involved in the production of these secondary metabolites. Although the fungus is known to secrete interesting small molecules the genome contains surprisingly few genes involved in the biosynthesis of polyketides (PKS) and non-ribosomal peptide synthetases (NRPS). Additional genes predicted to be part of secondary metabolism are located in subtelomeric regions suggesting that they are subject to high genetic and genomic variation. Here we review the pathways for the production of extracellular glycolipids that serve as biosurfactants, iron-chelating siderophores, tryptophan-derived indole pigments and indole acetic acid, the elucidation of which has greatly profited from the availability of the U. maydis genome sequence.  相似文献   

12.
Cloning and disruption of Ustilago maydis genes.   总被引:5,自引:2,他引:3       下载免费PDF全文
We have demonstrated that genes from Ustilago maydis can be cloned by direct complementation of mutants through the use of genomic libraries made in a high-frequency transformation vector. We isolated a gene involved in amino acid biosynthesis as an illustrative example and showed that integrative and one-step disruption methods can be used to create null mutations in the chromosomal copy of the gene by homologous recombination. The results of this investigation make it clear that one-step gene disruption will be of general utility in investigations of U. maydis, since simple, precise replacement of the sequence under study was readily achieved.  相似文献   

13.
The phytopathogenic basidiomycete Ustilago maydis requires its host plant, maize, for completion of its sexual cycle. To investigate the molecular events during infection, we used differential display to identify plant-induced U. maydis genes. We describe the U. maydis gene mig1 (for "maize-induced gene"), which is not expressed during yeast-like growth of the fungus, is weakly expressed during filamentous growth in axenic culture, but is extensively upregulated during plant infection. mig1 encodes a small, highly charged protein of unknown function which contains a functional N-terminal secretion sequence and is not essential for pathogenic development. Adjacent to mig1 is a second gene (mdu1) related to mig1, which appears to result from a gene duplication. mig1 gene expression during the infection cycle was assessed by fusing the promoter to eGFP. Expression of mig1 was absent in hyphae growing on the leaf surface but was detected after penetration and remained high during subsequent proliferation of the fungus until teliospore formation. Successive deletions as well as certain internal deletions in the mig1 promoter conferred elevated levels of reporter gene expression during growth in axenic culture, indicative of negative regulation. During fungal growth in planta, sequence elements between positions -148 and -519 in the mig1 promoter were specifically required for high levels of induction, illustrating additional positive control. We discuss the potential applications of mig1 for the identification of inducing compounds and the respective regulatory genes.  相似文献   

14.
15.
Our understanding of how cell cycle regulation and virulence are coordinated during the induction of fungal pathogenesis is limited. In the maize smut fungus Ustilago maydis, pathogenesis and sexual development are intricately interconnected. Furthermore, the first step in the infection process is mating, and this is linked to the cell cycle. In this study, we have identified a new G1 cyclin gene from U. maydis that we have named cln1. We investigated the roles of Cln1 in growth and differentiation in U. maydis and found that although not essential for growth, its absence produces dramatic morphological defects. We provide results that are consistent with Cln1 playing a conserved role in regulating the length of G1 and cell size, but also additional morphological functions. We also present experiments indicating that the cyclin Cln1 controls sexual development in U. maydis. Overexpression of cln1 blocks sexual development, while its absence enables the cell to express sexual determinants in conditions where wild-type cells were unable to initiate this developmental program. We conclude that Cln1 contributes to negative regulation of the timing of sexual development, and we propose the existence of a negative crosstalk between mating program and vegetative growth that may help explain why these two developmental options are incompatible in U. maydis.  相似文献   

16.
Sex in basidiomycete fungi is controlled by tetrapolar mating systems in which two unlinked gene complexes determine up to thousands of mating specificities, or by bipolar systems in which a single locus (MAT) specifies different sexes. The genus Ustilago contains bipolar (Ustilago hordei) and tetrapolar (Ustilago maydis) species and sexual development is associated with infection of cereal hosts. The U. hordei MAT-1 locus is unusually large (approximately 500 kb) and recombination is suppressed in this region. We mapped the genome of U. hordei and sequenced the MAT-1 region to allow a comparison with mating-type regions in U. maydis. Additionally the rDNA cluster in the U. hordei genome was identified and characterized. At MAT-1, we found 47 genes along with a striking accumulation of retrotransposons and repetitive DNA; the latter features were notably absent from the corresponding U. maydis regions. The tetrapolar mating system may be ancestral and differences in pathogenic life style and potential for inbreeding may have contributed to genome evolution.  相似文献   

17.
Dihydroorotate dehydrogenase (DHODH; EC 1.3.99.11) is a central enzyme of pyrimidine biosynthesis and catalyzes the oxidation of dihydroorotate to orotate. DHODH is an important target for antiparasitic and cytostatic drugs since rapid cell proliferation often depends on the de novo synthesis of pyrimidine nucleotides. We have cloned the pyr4 gene encoding mitochondrial DHODH from the basidiomycetous plant pathogen Ustilago maydis. We were able to show that pyr4 contains a functional mitochondrial targeting signal. The deletion of pyr4 resulted in uracil auxotrophy, enhanced sensitivity to UV irradiation, and a loss of pathogenicity on corn plants. The biochemical characterization of purified U. maydis DHODH overproduced in Escherichia coli revealed that the U. maydis enzyme uses quinone electron acceptor Q6 and is resistant to several commonly used DHODH inhibitors. Here we show that the expression of the human DHODH gene fused to the U. maydis mitochondrial targeting signal is able to complement the auxotrophic phenotype of pyr4 mutants. While U. maydis wild-type cells were resistant to the DHODH inhibitor brequinar, strains expressing the human DHODH gene became sensitive to this cytostatic drug. Such engineered U. maydis strains can be used in sensitive in vivo assays for the development of novel drugs specifically targeted at either human or fungal DHODH.  相似文献   

18.
In the phytopathogenic fungus Ustilago maydis, fusion of haploid cells is a prerequisite for infection. This process is controlled by a pheromone-receptor system. The receptors belong to the seven-transmembrane class that are coupled to heterotrimeric G proteins. Of four Galpha subunits in U. maydis, only gpa3 has a function during mating and cyclic AMP (cAMP) signaling. Activation of the cAMP cascade induces pheromone gene expression; however, it does not lead to the induction of conjugation tubes seen after pheromone stimulation. To investigate the possibility that a Gbeta subunit participates in pheromone signaling, we isolated the single beta subunit gene, bpp1, from U. maydis. bpp1 deletion mutants grew filamentously and showed attenuated pheromone gene expression, phenotypes associated with deltagpa3 strains. In addition, a constitutively active allele of gpa3 suppressed the phenotype of the bpp1 deletion strains. We suggest that Bpp1 and Gpa3 are components of the same heterotrimeric G protein acting on adenylyl cyclase. Interestingly, while deltagpa3 strains are impaired in pathogenicity, deltabpp1 mutants are able to induce plant tumors. This could indicate that Gpa3 operates independently of Bpp1 during pathogenic development.  相似文献   

19.
Amino acid, nitrogen and sulfur metabolism play critical roles in the growth and development of fungal pathogens both in and outside of the host. The genome sequence of Ustilago maydis provides an opportunity for exploring these biochemical pathways by comparison to known gene sequences from other fungi. This approach was used to identify candidate genes for almost all enzymes required for amino acid biosynthesis and degradation, as well as the uptake and assimilation of nitrogen and sulfur. A number of differences were found between U. maydis and other basidiomycetes, and between basidiomycetes and ascomycetes in general. The use of genomics to explore central metabolic pathways may be of value in characterizing strict biotrophic pathogens like U. maydis that seem to derive a very limited set of nutrients from the host and thus must retain extensive biosynthetic capacity.  相似文献   

20.
The use of fungal model systems, such as Saccharomyces cerevisisae and Schizosaccharomyces pombe, has contributed enormously to our understanding of essential cellular processes in animals. Here, we introduce the corn smut fungus Ustilago maydis as a new model organism for studying cell biological processes. Genome-wide analysis demonstrates that U. maydis is more closely related to humans than to budding yeast, and numerous proteins are shared only by U. maydis and Homo sapiens. Growing evidence suggests that basic principles of long-distance transport, mitosis and motor-based microtubule organization are conserved between U. maydis and humans. The fungus U. maydis, therefore, offers a unique system for the study of certain mammalian processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号