首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction between proteoglycan and link protein extracted from bovine articular cartilage (15-18-month-old animals) was investigated in 0.5 M-guanidinium chloride. The proteoglycans, radiolabelled as the aggregate (A1 fraction), were fractionated by two 'dissociative' density-gradient centrifugations (A1D1D1) followed by a rate-zonal centrifugation (S1) to yield an A1D1D1S1 preparation. At least 65% of these proteoglycans were able to bind to hyaluronate, but only 52% were able to bind to link protein as assessed by chromatography on Sepharose CL-2B. Over 80% of the [3H]link-protein preparation, radiolabelled as the aggregate, was able to interact with proteoglycan as assessed by chromatography on Sepharose CL-4B. Equilibrium-boundary-centrifugation studies performed at low link-protein concentrations (2.42 x 10(-9) M-5.93 x 10(-8) M) were analysed by Scatchard-type plots and indicated a Kd of 1.5 x 10(-8) M and a stoichiometry, n = 0.56, i.e. approx. 56% of those proteoglycans capable of binding to link protein had a strong site for link protein if a 1:1 stoichiometry were assumed. However, experiments performed at higher link-protein concentrations (3.5 x 10(-7) M and 8 x 10(-7) M) yielded stoichiometry values which were link-protein-concentration-dependent. Non-equilibrium binding studies using chromatography on Sepharose CL-2B and rate-zonal centrifugation yielded apparent stoichiometries between 0.6 and 7.5 link-protein molecules per proteoglycan monomer as a function of increasing link-protein concentration. It was concluded that a proportion of the proteoglycan molecules had a strong site for binding a single link protein (Kd 1.5 x 10(-8) M) and that at high link-protein concentrations a weaker, open-ended, process of link-protein self-association nucleated upon the strong link-protein-proteoglycan complex occurred. Hyaluronate oligosaccharides appeared to abolish a proportion of this self-association (as observed by Bonnet, Dunham & Hardingham [(1985) Biochem. J. 228, 77-85] in a study of link-protein-hyaluronate-oligosaccharide interactions) so as to leave a link protein:proteoglycan stoichiometry of 2. It is not clear whether this second link-protein molecule binds directly to the proteoglycan or to the first link protein.  相似文献   

2.
In cartilage proteoglycan aggregates, link protein stabilizes the binding of proteoglycan monomers to hyaluronate by binding simultaneously to hyaluronate and to the G1 globular domain of proteoglycan monomer core protein. Studies reported here involving metal chelate affinity chromatography demonstrate that link protein is a metalloprotein that binds Zn2+, Ni2+, and Co2+. Zn2+ and Ni2+ decrease the solubility of link protein and result in its precipitation. However, link protein is readily soluble and functional in low ionic strength solvents from which divalent cations have been removed with Chelex 100. These observations make it possible to study the biochemical properties of link protein in low ionic strength, physiologic solvents. Studies were carried out to define the oligomeric state of link protein alone in physiologic solvents, and the transformation in oligomeric state that occurs when link protein binds hyaluronate. Sedimentation equilibrium studies demonstrate that in 0.15 M NaCl, 5 mM EDTA, 50 mM Tris, pH 7, link protein exists as a monomer-hexamer equilibrium controlled by a formation constant of 2 x 10(27) M-5, yielding a delta G' of -36 kcal/mol for the formation of the hexamer from six monomers. On binding hyaluronate oligosaccharides (HA10 or HA12), link protein dissociates to dimer. Link protein hexamer is rendered insoluble by Zn2+. Greater than 90% of the protein is precipitated by 2 mol of Zn2+/mol of link protein monomer. The binding of hyaluronate oligosaccharide by link protein strongly inhibits the precipitation of link protein by Zn2+. The link protein/hyaluronate oligosaccharide complex is completely soluble in the presence of 2 mol of Zn2+/mol of link protein. At higher molar ratios of Zn2+/link protein, the inhibitory effect of hyaluronate oligosaccharide on the precipitation of link protein is gradually overcome. Hyaluronate oligosaccharide is not dissociated from link protein by Zn2+. Hyaluronate remains bound to the link protein which is precipitated by Zn2+, or to the link protein which binds to Zn2(+)-charged iminodiacetate-Sepharose columns. Hyaluronate oligosaccharides and Zn2+ bind to different sites on link protein.  相似文献   

3.
Rat liver endothelial cells in primary cultures at 7 degrees C bind radioactively labelled sodium hyaluronate (HA; Mr 400 000) specifically and with high affinity (Kd = 6 X 10(-11) M). Maximal binding capacity is approx. 10(4) molecules per cell. Inhibition experiments with unlabelled HA and oligosaccharides from HA indicate that each molecule is bound by several receptors acting co-operatively and that the single receptor recognizes a tetra- or hexa-saccharide sequence of the polysaccharide. At 37 degrees C the liver endothelial cells endocytose the HA. The process combines the features of a receptor-mediated and a fluid-phase endocytosis. The rate of internalization does not show any saturation with increasing HA concentration, but is approximately proportional to the polysaccharide concentration at and above the physiological concentration. At 50 micrograms of free HA/l each liver endothelial cell accumulates 0.1 fg of the polysaccharide/min. Fluorescent HA accumulates in perinuclear granules, presumably lysosomes. Degradation products from HA appear in the medium about 30 min after addition of the polysaccharide to the cultures. The radioactivity from HA containing N-[3H]acetyl groups or 14C in the sugar rings is recovered mainly as [3H]acetate and [14C]acetate respectively. Estimations of the capacity of liver endothelial cells to internalize and degrade HA in vitro indicate that these cells may be primarily responsible for the clearance of HA from human blood in vivo.  相似文献   

4.
Hyaluronate binding properties of versican.   总被引:7,自引:0,他引:7  
We have previously cloned a large chondroitin sulfate proteoglycan (versican) from human fibroblasts. The primary sequence shows that the N terminus contains sequence homology with known hyaluronate-binding molecule, suggesting that versican can bind hyaluronate. To test this hypothesis we have reconstructed a full-length versican cDNA and a versican cDNA fragment encoding the N terminus and have transfected Chinese hamster ovary cells and mouse 3T3 fibroblasts, respectively, with these constructs. The transfected Chinese hamster ovary cells make a proteoglycan shown to be versican by enzymatic and immunologic analysis. No corresponding proteoglycan was seen in the control cells. Using hyaluronate affinity chromatography, we show that recombinant versican specifically binds hyaluronate and does not bind to heparin or chondroitin sulfate. The transfected fibroblasts make a 78-kDa truncated form of versican that also binds hyaluronate and does not bind the related polysaccharides, showing that the hyaluronate binding activity resides at the N terminus of versican. The binding of versican to hyaluronate is substrate-concentration dependent and time dependent and can be competed with unlabeled versican. The dissociation constant for versican binding to hyaluronate was determined to be 4 x 10(-9) M.  相似文献   

5.
Confluent cultures of mouse aortic endothelial (END-D) were incubated with either [35S]methionine or 35SO4 2-, and the radiolabelled proteoglycans in media and cell layers were analysed for their hyaluronate-binding activity. The proteoglycan subfraction which bound to hyaluronate accounted for about 18% (media) and 10% (cell layers) of the total 35S radioactivity of each proteoglycan fraction. The bound proteoglycan molecules could be dissociated from the aggregates either by digestion with hyaluronate lyase or by treatment with hyaluronate decasaccharides. Digestion of [methionine-35S]proteoglycans with chondroitinase and/or heparitinase, followed by SDS/polyacrylamide-gel electrophoresis, indicated that the medium and cell layer contain at least three chondroitin sulphate proteoglycans, one dermatan sulphate proteoglycan, and two heparan sulphate proteoglycans which differ from one another in the size of core molecules. Among these, only the hydrodynamically large chondroitin sulphate species with an Mr 550,000 core molecule was shown to bind to hyaluronate. A very similar chondroitin sulphate proteoglycan capable of binding to hyaluronate was also found in cultures of calf pulmonary arterial endothelial cells (A.T.C.C. CCL 209). These observations, together with the known effects of hyaluronate on various cellular activities, suggest the existence of possible specialized functions of this proteoglycan subspecies in cellular processes characteristic of vascular development and diseases.  相似文献   

6.
Proteoglycan aggregates free of non-aggregating proteoglycan have been prepared from the annuli fibrosi and nuclei pulposi of intervertebral discs of three human lumbar spines by extraction with 4M-guanidinium chloride, associative density gradient centrifugation, and chromatography on Sepharose CL-2B. The aggregate (A1-2B.V0) was subjected to dissociative density-gradient ultracentrifugation. Three proteins of Mr 38 900, 44 200 and 50 100 found in the fraction of low buoyant density (A1-2B.V0-D4) reacted with antibodies to link protein from newborn human articular cartilage. After reduction with mercaptoethanol, two proteins of Mr 43 000 and two of Mr 20 000 and 14 000 were seen. The A1-2B.V0-D4 fraction, labelled with 125I, coeluted with both hyaluronate and a hyaluronate oligosaccharide (HA14) on a Sepharose CL-2B column. HA10 and HA14 reduced the viscosity of A1 fractions; HA4, HA6 and HA8 did not. HA14 decreased the viscosity of disc proteoglycans less than it did that of bovine cartilage proteoglycans. Thus, although a link protein was present in human intervertebral disc, it stabilized proteoglycan aggregates less well than did the link protein from bovine nasal cartilage.  相似文献   

7.
The interaction of L-tyrosine, L-tyrosyladenylate and tRNA-Tyr with tyrosyl-tRNA synthetase from Bacillus stearothermophilus was studied by equilibrium dialysis, gel filtration and fluorescence spectroscopy. The enzyme, which consists of two identical subunits (mol. wt 2 x 44000), binds only a single molecule of L-tyrosine per dimer with a K-d of 2 x 10-5 M at pH 7.8 and 23 degrees C. The tyrosyl-tRNA synthetase--tyrosyladenylate complex which was isolated by gel filtration also has one adenylate bound per dimeric enzyme molecule. In contrast, two tRNA-Tyr molecules bind per enzyme dimer, but the two binding sites are not equivalent having K-d values of 2 x 10-7 M and 1.3 x 10-6 M respectively at pH 6.5 and 25 degrees C. Since crystallographic analysis of the free enzyme [2] shows that the monomer is the asymmetric unit, the data indicate that substrate binding induces asymmetry in the enzyme.  相似文献   

8.
The interactions of the bovine cation-dependent mannose 6-phosphate receptor with monovalent and divalent ligands have been studied by equilibrium dialysis. This receptor appears to be a homodimer or a tetramer. Each mole of receptor monomer bound 1.2 mol of the monovalent ligands, mannose 6-phosphate and pentamannose phosphate with Kd values of 8 X 10(-6) M and 6 X 10(-6) M, respectively and 0.5 mol of the divalent ligand, a high mannose oligosaccharide with two phosphomonoesters, with a Kd of 2 X 10(-7) M. When Mn2+ was replaced by EDTA in the dialysis buffer, the Kd for pentamannose phosphate was 2.5 X 10(-5) M. By measuring the affinity of the cation-dependent and cation-independent mannose 6-phosphate receptors for a variety of mannose 6-phosphate analogs, we conclude that the 6-phosphate and the 2-hydroxyl of mannose 6-phosphate each contribute approximately 4-5 kcal/mol of Gibb's free energy to the binding reaction. Neither receptor appears to interact substantially with the anomeric oxygen of mannose 6-phosphate. The receptors differ in that the cation-dependent receptor displays no detectable affinity for N-acetylglucosamine 1'-(alpha-D-methylmannopyranose 6-monophosphate) whereas this ligand binds to the cation-independent receptor with a poor, but readily measurable Kd of about 0.1 mM. The spacing of the mannose 6-phosphate-binding sites relative to each other may also differ for the two receptors.  相似文献   

9.
A dialysis cell is described for use in an NMR spectrometer, to make spectroscopic determinations of protein-small molecule binding. The protein solution is contained within a cylindrical dialysis tube which is concentrically suspended in an NMR tube containing a protein-free dialysis buffer. Simultaneous determinations of the equilibrium transmembrane distribution of the small molecule and the chemical shifts in both compartments are made spectroscopically, providing estimates of the dissociation constant and the chemical shift of the bound species. The cell is used for 31P NMR spectroscopic measurement of the degree of binding of 2,3-diphosphoglycerate to hemoglobin in a 2.8 mM carboxyhemoglobin solution at pH 6.9 and 21 degrees C. The Kd is found to be 2.4 x 10(-3) M.  相似文献   

10.
Cultured chondrocytes from the Swarm rat chondrosarcoma incorporate [35S]sulfate into proteoglycans typical of hyaline cartilage. The movement of newly synthesized proteoglycans from inside the cells into the extracellular matrix and, finally, into the culture medium was examined by measuring the distribution of 35S-labeled proteoglycans in the medium, a 4 M guanidine HCl extract of the cell layer, and in the remaining residue for a number of chase times following a 5-min pulse with [35S]sulfate. When hyaluronate oligosaccharides containing greater than or equal to 10 monosaccharides were included in the chase media, a proportion of newly synthesized proteoglycans were displaced from the matrix (4 M extract) into the culture medium. This displacement was greatest when oligomers were in the chase media between 10 and 20 min after the pulse, approximately the time when the molecules are being secreted from the cells. The proportion of link-stabilized aggregate in the medium was examined by Sepharose 2B chromatography after adding an excess of unlabeled monomer which displaces labeled monomer from complexes with hyaluronate which are not link-stabilized. The proportion of link-stabilized aggregate increased from 12% to about 70% between 12 and 120 min of chase. The presence of 40 micron hyaluronate oligosaccharides of 16 monosaccharides in the chase media retarded but did not prevent aggregate formation. Oligomers of about 50 monosaccharides, which are large enough to bind both a monomer proteoglycan and a link protein, almost completely prevented the formation of the large link-stabilized aggregates. The results suggest: (a) newly synthesized proteoglycans are not bound into link-stabilized aggregates at the time of secretion; (b) hyaluronic acid oligomers which are long enough to interact only with the hyaluronic acid-binding site of proteoglycans will retard but not prevent link-stabilized aggregation; and (c) hyaluronic acid oligomers long enough to accommodate additionally a link protein form a link-stabilized ternary complex and prevent aggregation with larger hyaluronic acid molecules.  相似文献   

11.
R M Nelson  G L Long 《Biochemistry》1991,30(9):2384-2390
Solution-phase equilibrium binding studies of human protein S (HPS) and C4b-binding protein (C4BP) were undertaken using purified components. Free C4BP was measured in solutions at equilibrium by using HPS immobilized on a solid phase, coupled with an antibody detection system. Disruption of the solution-phase equilibrium was minimized by using a brief (15 min) exposure to the solid-phase HPS. These studies yielded an equilibrium dissociation constant (Kd) approximately 6 x 10(-10) M and a stoichiometry of approximately 1.7 molecules of HPS bound to each molecule of C4BP. This Kd is between 27-fold and 930-fold lower than previously published values obtained by using solid-phase and nonequilibrium methods. Equilibrium was achieved in solutions containing low nanomolar concentrations of both HPS and C4BP in less than or equal to 1 h at 37 degrees C, suggesting a rapid association rate constant for the interaction. Thrombin cleavage of HPS had no effect on the observed binding parameters. The binding interaction between HPS and C4BP appears to be partly calcium dependent, since in the presence of EDTA the Kd was increased to about 6 x 10(-9) M, with no change in the stoichiometry. This high-affinity binding interaction between HPS and C4BP, whose Kd is more than 500-fold lower than the proteins' plasma concentrations, heightens the apparent physiologic importance of complex formation.  相似文献   

12.
Primary cultures of rabbit articular chondrocytes have been maintained for 10 days and labeled with [35S]sulfate, [3H]leucine, and [35S]cysteine in pulse-chase protocols to study the structure and hyaluronate binding properties of newly synthesized proteoglycan monomers. Radiolabeled monomers were purified from medium and cell-layer fractions by dissociative CsCl gradient centrifugation with bovine carrier monomer, and analyzed for hyaluronate binding affinity on Sepharose CL-2B in 0.5 M Na acetate, 0.1% Triton X-100, pH 6.8. Detergent was necessary to prevent self-association of newly synthesized monomers during chromatography. Monomers secreted during a 30-min pulse labeling with [35S]sulfate had a low affinity relative to carrier. Those molecules released into the medium during the first 12 h of chase (about 40% of the total) remained in the low affinity form whereas those retained by the cell layer rapidly acquired high affinity. In cultures where more than 90% of the preformed cell-layer proteoglycan was removed by hyaluronidase digestion before radiolabeling the newly synthesized low affinity monomers also rapidly acquired high affinity if retained in the cell layer. Cultures labeled with amino acid precursors were used to establish the purity of monomer preparations and to isolate core proteins for study. Leucine- or cysteine-labeled core proteins derived from either low or high affinity monomer preparations migrated as a single major species on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with electrophoretic mobility very similar to that of core protein derived from extracted proteoglycan monomer. Purified low affinity monomers were converted to the high affinity form by treatment at pH 8.6; however, this change was prevented by guanidinium-HCl at concentrations above 0.8 M. Conversion to high affinity was also achieved by incubation of monomers in aggregate with hyaluronic acid (HA) at pH 6.8 followed by dissociative reisolation of monomer. At both pH 6.8 and 8.6 the conversion process was slow, requiring up to 48 h for the maximum increase in affinity. It is suggested that the slow increase in HA binding affinity seen during extracellular processing of proteoglycans in cartilage and chondrocyte cultures is the result of an irreversible structural change in the HA binding domain following the binding of monomer to hyaluronate. The available evidence suggests that this change involves the formation or rearrangement of disulfide bonds.  相似文献   

13.
Subcutaneous implantation of demineralized bone matrix in rats induces migration of host cells into the site and results in the sequential development of cartilage and bone. The biosynthesis and metabolic fate of proteoglycans in the plaques at the bone matrix implantation site were investigated by [35S]sulfate labeling in vivo. 35S-Labeled proteoglycans were extracted with 4 M guanidine HCl and purified by DEAE-Sephacel chromatography. Analysis of proteoglycans on Sepharose CL-2B chromatography showed two major peaks at Kd = 0.28 and 0.68 (peaks I and II, respectively). Peak I proteoglycan has a high buoyant density and contains chondroitin sulfate chains of average Mr = 20,000. Peak II proteoglycan has a lower average buoyant density and contains dermatan sulfate chains of average Mr = 33,000. Throughout the endochondral bone development sequence, peak II proteoglycan predominates. Peak I was low on Day 3, became prominent on Day 7 (approximately 30% of the total radioactivity), and declined after Day 9. The calculated half-lives of peak I and II proteoglycans labeled on Day 7 were about 1.8 and 2.8 days, respectively. After the initiation of osteogenesis, a species of mineral-associated proteoglycan was extracted with a 4 M guanidine HCl solvent containing 0.5 M EDTA. This proteoglycan has a small hydrodynamic size (Kd = 0.38 on Sepharose CL-6B chromatography) and shows a long half-life, about 6 days.  相似文献   

14.
High affinity binding of human interleukin 4 to cell lines   总被引:5,自引:0,他引:5  
Purified human recombinant interleukin 4 (IL-4) was radio iodinated to high specific radioactivity without loss of biological activity. 125I-IL-4 bound specifically to the Burkitt lymphoma Jijoye cells and other cell lines. Jijoye cells showed a high affinity for 125I-IL-4 (Kd approximately equal to 7 10(-11) M) and displayed 1200-1400 specific receptors per cell at 4 degrees C or 37 degrees C. The equilibrium dissociation constant (Kd) corresponds to the IL-4 concentration which induces 50% maximal expression of the low affinity IgE receptor (Fc epsilon RL/CD23) on Jijoye cells. At 4 degrees C the rate constant of association K1 is 1.7 x 10(6) M-1 s-1 and the rate contant of dissociation k -1 is 1.3 x 10(-4) s-1 (t 1/2 = 91 min.) No human recombinant lymphokines other than IL-4 were able to compete for the binding of 125I-IL-4 to its receptor.  相似文献   

15.
The major protein component of bovine high density lipoprotein was investigated in solution by fluorescence polarization and ultracentrifugal techniques. A fluorescent derivative of this protein with 1-dimethylaminonaphthalene-5-sulfonyl chloride was employed in the fluorescence experiments. Over the concentration range from 5-10(-7) M to 5-10(-4) M of the protein monomer at pH values from 2 to 11 and ionic strengths from 0.03 to 2.0, at 23 degrees C, the major protein of bovine high density lipoproteinapoprotein (Apo-HOL-I) was found to exist in a stable aggregated form. The aggregate was not affected by dioxane additions of up to 20% nor by Triton X-100 to 0.2%, but dissociated readily in the presence of 0.07% sodium dodecylsulfate or 6 M urea. At concentrations below 5-10(-7) M, dissociation of the protein aggregate started spontaneously and continued down to 10(-8) M, the lowest measurable concentration. Several physiocochemical properties of the major protein of bovine high density lipoprotein were determined in the stable aggregate form. Molecular weight was 104 000 from ultracentrifugal analysis and 80 000 from gel-filtration. Rotational relaxation time was 115 ns at 25 degrees C, and s-0 20,w was 4.78 s. The results suggest very strong protein-protein interactions (Kd less than 10(-7) M) that are not electrostatic in nature. Hydrophobic interactions of a magnitude that could be affected by 20% dioxane or 0.2% Triton X-100 detergent are also excluded. There is saturation of the interaction sites by the aggregation of a few protein monomer units possibly to form a tetramer which is moderately asymmetric (1:4 axial ratio, assuming an ellipsoid of revolution) and relatively rigid. The strong protein-protein interactions in this pure apolipoprotein suggest the possibility of competition of inter-protein associations with protein-lipid interactions in in vitro lipid binding or lipoprotein reconstitution experiments.  相似文献   

16.
S C Quay  C C Condie 《Biochemistry》1983,22(3):695-700
The self-association reaction in which four melittin molecules associate to form an aqueously soluble tetramer was studied by fluorescent spectroscopy. At 23 degrees C, pH 7.15, gamma/2 0.50, the dissociation constant, Kd, is 3.20 x 10(-16) M3. At 23 degrees C, gamma/2 0.60, melittin has an amino acyl group with a proton ionization constant at ca. 10(-6) M, which must be un-ionized for tetramer formation to occur. The change in Kd with temperature indicates the forward reaction (tetramer formation) proceeds primarily by entropic changes, with delta H degrees = -20.3 kJ/mol of monomer and delta S degrees = 211 J/(K . mol of monomer). The observed enthalpic and entropic values for the tetramerization reaction are consistent with the expected contributions of both nascent hydrogen bonds and hydrophobic stabilization to the reaction. The ionic strength dependence of the tetramerization reaction was found to be consistent with an Edsall-Wyman treatment of activity coefficients. Specifically, the calculated charge of melittin varied from 2.5 (pH 10.53, gamma/2 less than 0.08) to ca. 6 (pH 7.15, gamma/2 greater than 0.3) and showed a strong dependence on gamma/2.  相似文献   

17.
The effects of tissue compression on the hyaluronate-binding properties of newly synthesized proteoglycans in calf cartilage explants were examined. Pulse-chase experiments showed that conversion of low-affinity monomers to the high-affinity form (that is, to a form capable of forming aggregates with 1.6% hyaluronate on Sephacryl S-1000) occurred with a t1/2 of about 5.7 h in free-swelling discs at pH 7.45. Static compression during chase (in pH 7.45 medium) slowed the conversion, as did incubation in acidic medium (without compression). Both effects were dose-dependent. For example, the t1/2 for conversion was increased to about 11 h by either (1) compression from a thickness of 1.25 mm to 0.5 mm or (2) medium acidification from pH 7.45 to 6.99. Oscillatory compression of 2% amplitude at 0.001, 0.01, or 0.1 cycles/s during chase did not, however, affect the conversion. Changes in the hyaluronate-binding affinity of [35S]proteoglycans in these experiments were accompanied by no marked change in the high percentage (approximately 80%) of monomers which could form aggregates with excess hyaluronate and link protein. Since static tissue compression would result in an increased matrix proteoglycan concentration and thereby a lower intra-tissue pH [Gray, Pizzanelli, Grodzinsky & Lee (1988) J. Orthop. Res. 6, 777-792], it seems likely that matrix pH may influence proteoglycan aggregate assembly by an effect on the hyaluronate-binding affinity of proteoglycan monomer. Such a pH mechanism might have a physiological role, promoting proteoglycan deposition in regions of low proteoglycan concentration.  相似文献   

18.
Urea-induced dissociation and unfolding of manganese.glutamine synthetase (Mn.GS) have been studied at 37 degrees C (pH 7) by spectroscopic and calorimetric methods. In 0 to approximately 2 M urea, Mn.GS retains its dodecameric structure and full catalytic activity. Mn.GS is dissociated into subunits in 6 M urea, as evidenced by a 12-fold decrease in 90 degrees light scattering and a monomer molecular weight of 51,800 in sedimentation equilibrium studies. The light scattering decrease in 4 M urea parallels the time course of Trp exposure but occurs more rapidly than changes in secondary structure and Tyr exposure. Early and late kinetic steps appear to involve predominantly disruption of intra-ring and inter-ring subunit contacts, respectively, in the layered hexagonal structure of Mn.GS. The enthalpies for transferring Mn.GS into urea solutions have been measured by titration calorimetry. After correcting for the enthalpy of binding urea to the protein, the enthalpy of dissociation and unfolding of Mn.GS is 14 +/- 4 cal/g. A net proton uptake of approximately 50 H+/dodecamer accompanies unfolding reactions. The calorimetric data are consistent with urea binding to multiple, independent sites in Mn.GS and the number of binding sites increasing approximately 9-fold during the protein unfolding.  相似文献   

19.
Two chondroitin sulfate containing proteoglycans, amounting to approximately 6% of the tissue proteoglycans, were isolated from the skin of the squid. They were almost completely extracted by 4 M guanidine hydrochloride in the presence of proteinase inhibitors, and then they were separated by DEAE-Sephacel chromatography and isolated by further chromatography on Sepharose CL-4B. Each proteoglycan contained two types of chondroitin sulfates that differed in their sulfation patterns. One proteoglycan (molecular mass (M(r)) 5.6 x 10(5)) contained, on the average, four chondroitins (M(r) 8.4 x 10(4)) and five chondroitin sulfates (M(r) 3.4 x 10(4)), whereas the other proteoglycan (M(r) 5.2 x 10(5)) contained three chondroitin sulfates (M(r) 1.1 x 10(5)) and five oversulfated chondroitin sulfates (M(r) 4.3 x 10(4)). The glycosaminoglycans were released from the proteoglycans by treatment with alkaline borohydride, separated from the oligosaccharides by chromatography on Bio-Gel P-30, and isolated by chromatography on DEAE-Sephacel and Sepharose CL-6B. Chondroitin sulfates were degraded by chondroitinase AC to an extent of 70% and consisted of significant amounts of disaccharides sulfated at C-4 of the galactosamine, disulfated disaccharides, and small amounts of nonsulfated disaccharides, as well as disaccharides that bore sulfates at C-6. Oversulfated chondroitin sulfate was degraded by chondroitinase AC to only 40% and contained appreciable amounts of disulfated and trisulfated disaccharides. The glycosaminoglycans also contained neutral monosaccharides; glucose was the predominant neutral sugar. A part of the oligosaccharides of both proteoglycans was of identical structure to that of chondroitin sulfate.  相似文献   

20.
S J Frost  R H Raja  P H Weigel 《Biochemistry》1990,29(45):10425-10432
125I-HA, prepared by chemical modification at the reducing sugar, specifically binds to rat hepatocytes in suspension or culture. Intact hepatocytes have relatively few surface 125I-HA binding sites and show low specific binding. However, permeabilization of hepatocytes with the nonionic detergent digitonin results in increased specific 125I-HA binding (45-65%) and a very large increase in the number of specific 125I-HA binding sites. Scatchard analysis of equilibrium 125I-HA binding to permeabilized hepatocytes in suspension at 4 degrees C indicates a Kd = 1.8 x 10(-7) M and 1.3 x 10(6) molecules of HA (Mr approximately 30,000) bound per cell at saturation. Hepatocytes in primary culture for 24 h show the same affinity but the total number of HA molecules bound per cell at saturation decreases to approximately 6.2 x 10(5). Increasing the ionic strength above physiologic concentrations decreases 125I-HA binding to permeable cells, whereas decreasing the ionic strength above causes an approximately 4-fold increase. The divalent cation chelator EGTA does not prevent binding nor does it release 125I-HA bound in the presence of 2 mM CaCl2, although higher divalent cation concentrations stimulate 125I-HA binding. Ten millimolar CaCl2 or MnCl2 increases HA binding 3-6-fold compared to EGTA-treated cells. Ten millimolar MgCl2, SrCl2, or BaCl2 increased HA binding by 2-fold. The specific binding of 125I-HA to digitonin-treated hepatocytes at 4 degrees C increased greater than 10-fold at pH 5.0 as compared to pH 7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号