首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonsense-mediated mRNA decay (NMD) pathway serves an important role in gene expression by targeting aberrant mRNAs that have acquired premature termination codons (PTCs) as well as a subset of normally processed endogenous mRNAs. One determinant for the targeting of mRNAs by NMD is the occurrence of translation termination distal to the poly(A) tail. Yet, a large subset of naturally occurring mRNAs contain long 3′ UTRs, many of which, according to global studies, are insensitive to NMD. This raises the possibility that such mRNAs have evolved mechanisms for NMD evasion. Here, we analyzed a set of human long 3′ UTR mRNAs and found that many are indeed resistant to NMD. By dissecting the 3′ UTR of one such mRNA, TRAM1 mRNA, we identified a cis element located within the first 200 nt that inhibits NMD when positioned in downstream proximity of the translation termination codon and is sufficient for repressing NMD of a heterologous reporter mRNA. Investigation of other NMD-evading long 3′ UTR mRNAs revealed a subset that, similar to TRAM1 mRNA, contains NMD-inhibiting cis elements in the first 200 nt. A smaller subset of long 3′ UTR mRNAs evades NMD by a different mechanism that appears to be independent of a termination-proximal cis element. Our study suggests that different mechanisms have evolved to ensure NMD evasion of human mRNAs with long 3′ UTRs.  相似文献   

2.
3.
4.
5.
6.
Messenger RNAs (mRNAs) that contain premature translation termination codons (PTCs) are targeted for rapid degradation in all eukaryotes tested. The mechanisms of nonsense-mediated mRNA decay (NMD) have been described in considerable detail, but the biological roles of NMD in wild-type organisms are poorly understood. mRNAs of wild-type organisms known to be degraded by NMD ("natural targets" of NMD) include by-products of regulated alternative splicing, out-of-frame mRNAs derived from unproductive gene rearrangements, cytoplasmic pre-mRNAs, endogenous retroviral and transposon RNAs, and mRNAs having upstream open reading frames or other unusual sequence features. NMD may function to eliminate aberrant PTC-containing mRNAs in order to protect cells from expression of potentially deleterious truncated proteins. Pseudogenes are nonfunctional genes or gene fragments that accumulate mutations through genetic drift. Such mutations will often introduce shifts of reading frame and/or PTCs, and mRNAs of expressed pseudogenes may thus be substrates of NMD. We demonstrate that mRNAs expressed from C. elegans pseudogenes are degraded by NMD and discuss possible implications for both mRNA surveillance and protein evolution. We describe an expressed pseudogene that encodes a small nucleolar RNA (snoRNA) within an intron and suggest this represents an evolutionary intermediate between snoRNA-encoding host genes that do or do not encode proteins.  相似文献   

7.
Nonsense-mediated mRNA decay (NMD) is a highly regulated quality control mechanism through which mRNAs harboring a premature termination codon are degraded. It is also a regulatory pathway for some genes. This mechanism is subject to various levels of regulation, including phosphorylation. To date only one kinase, SMG1, has been described to participate in NMD, by targeting the central NMD factor UPF1. Here, screening of a kinase inhibitor library revealed as putative NMD inhibitors several molecules targeting the protein kinase AKT1. We present evidence demonstrating that AKT1, a central player in the PI3K/AKT/mTOR signaling pathway, plays an essential role in NMD, being recruited by the UPF3X protein to phosphorylate UPF1. As AKT1 is often overactivated in cancer cells and as this should result in increased NMD efficiency, the possibility that this increase might affect cancer processes and be targeted in cancer therapy is discussed.  相似文献   

8.
9.
Recognition and elimination of nonsense mRNA   总被引:2,自引:0,他引:2  
  相似文献   

10.
11.
12.
13.
14.
15.
The unfolded protein response (UPR) is a major signaling cascade that determines cell fate under conditions of endoplasmic reticulum (ER) stress. The kinetics and amplitude of UPR responses are tightly controlled by several feedback loops and the expression of positive and negative regulators. In this issue of EMBO Reports, the Wilkinson lab uncovers a novel function of nonsense‐mediated RNA decay (NMD) in fine‐tuning the UPR 1 . NMD is an mRNA quality control mechanism known to destabilize aberrant mRNAs that contain premature termination codons. In this work, NMD was shown to determine the threshold of stress necessary to activate the UPR, in addition to adjusting the amplitude of downstream responses and the termination phase. These effects were mapped to the control of the mRNA stability of IRE1, a major ER stress transducer. This study highlights the dynamic crosstalk between mRNA metabolism and the proteostasis network demonstrating the physiological relevance of normal mRNA regulation by the NMD pathway.  相似文献   

16.
17.
18.
19.
Nonsense-mediated mRNA decay (NMD) is a conserved RNA decay pathway that degrades aberrant mRNAs and directly regulates many normal mRNAs. This dual role for NMD raises the possibility that its magnitude is buffered to prevent the potentially catastrophic alterations in gene expression that would otherwise occur if NMD were perturbed by environmental or genetic insults. In support of this, here we report the existence of a negative feedback regulatory network that directly acts on seven NMD factors. Feedback regulation is conferred by different branches of the NMD pathway in a cell type-specific and developmentally regulated manner. We identify feedback-regulated NMD factors that are rate limiting for NMD and demonstrate that reversal of feedback regulation in response to NMD perturbation is crucial for maintaining NMD. Together, our results suggest the existence of an intricate feedback network that maintains both RNA surveillance and the homeostasis of normal gene expression in mammalian cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号