首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Proteins interact in complex protein–protein interaction (PPI) networks whose topological properties—such as scale-free topology, hierarchical modularity, and dissortativity—have suggested models of network evolution. Currently preferred models invoke preferential attachment or gene duplication and divergence to produce networks whose topology matches that observed for real PPIs, thus supporting these as likely models for network evolution. Here, we show that the interaction density and homodimeric frequency are highly protein age–dependent in real PPI networks in a manner which does not agree with these canonical models. In light of these results, we propose an alternative stochastic model, which adds each protein sequentially to a growing network in a manner analogous to protein crystal growth (CG) in solution. The key ideas are (1) interaction probability increases with availability of unoccupied interaction surface, thus following an anti-preferential attachment rule, (2) as a network grows, highly connected sub-networks emerge into protein modules or complexes, and (3) once a new protein is committed to a module, further connections tend to be localized within that module. The CG model produces PPI networks consistent in both topology and age distributions with real PPI networks and is well supported by the spatial arrangement of protein complexes of known 3-D structure, suggesting a plausible physical mechanism for network evolution.  相似文献   

2.
3.
The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology—random networks of Erdős-Rényi type and networks with highly interconnected hubs—we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.  相似文献   

4.
5.
6.
7.
神经元网络是大脑执行高级认知行为的结构基础,研究证明学习记忆及神经退行性疾病与神经元网络可塑性密切相关。因此,揭示调控和改变神经元网络可塑性的机制对理解神经系统信息交互以及疾病治疗具有重大意义。目前,基于微电极阵列(microelectrode array, MEA)培养的神经元网络是体外探究学习和记忆机制的理想模型,同时针对该模型的研究为预防和治疗神经退行性疾病提供了独特的视角。本文综述了基于MEA采集体外培养神经元网络的放电信号来构建功能网络的相关研究,分别从二维神经元网络和三维脑类器官发育,以及开环和闭环电刺激对神经元网络可塑性影响的角度,总结了体外培养神经元网络可塑性的相关研究,最后对该方向的应用前景进行了展望。  相似文献   

8.
Functional connectivity of in vitro neuronal networks was estimated by applying different statistical algorithms on data collected by Micro-Electrode Arrays (MEAs). First we tested these “connectivity methods” on neuronal network models at an increasing level of complexity and evaluated the performance in terms of ROC (Receiver Operating Characteristic) and PPC (Positive Precision Curve), a new defined complementary method specifically developed for functional links identification. Then, the algorithms better estimated the actual connectivity of the network models, were used to extract functional connectivity from cultured cortical networks coupled to MEAs. Among the proposed approaches, Transfer Entropy and Joint-Entropy showed the best results suggesting those methods as good candidates to extract functional links in actual neuronal networks from multi-site recordings.  相似文献   

9.
Computational modeling of genomic regulation has become an important focus of systems biology and genomic signal processing for the past several years. It holds the promise to uncover both the structure and dynamical properties of the complex gene, protein or metabolic networks responsible for the cell functioning in various contexts and regimes. This, in turn, will lead to the development of optimal intervention strategies for prevention and control of disease. At the same time, constructing such computational models faces several challenges. High complexity is one of the major impediments for the practical applications of the models. Thus, reducing the size/complexity of a model becomes a critical issue in problems such as model selection, construction of tractable subnetwork models, and control of its dynamical behavior. We focus on the reduction problem in the context of two specific models of genomic regulation: Boolean networks with perturbation (BNP) and probabilistic Boolean networks (PBN). We also compare and draw a parallel between the reduction problem and two other important problems of computational modeling of genomic networks: the problem of network inference and the problem of designing external control policies for intervention/altering the dynamics of the model.  相似文献   

10.
We combined Hodgkin–Huxley equations and gating models of gap junction (GJ) channels to simulate the spread of excitation in two-dimensional networks composed of neurons interconnected by voltage-gated GJs. Each GJ channel contains two fast and slow gates, each exhibiting current–voltage (I-V) rectification and gating properties that depend on transjunctional voltage (Vj). The data obtained show how junctional conductance (gj), which is necessary for synchronization of the neuronal network, depends on its size and the intrinsic firing rate of neurons. A phase shift between action potentials (APs) of neighboring neurons creates bipolar, short-lasting Vj spikes of approximately ±100 mV that induce Vj gating, leading to a small decay of gj, which can accumulate into larger decays during bursting activity of neurons. We show that I-V rectification of GJs in local regions of the two-dimensional network of neurons can lead to unidirectional AP transfer and consequently to reverberation of excitation. This reverberation can be initiated by a single electrical pulse and terminated by a low-amplitude pulse applied in a specific window of reverberation cycle. Thus, the model accounts for the influence of dynamically modulatable electrical synapses in shaping the function of a neuronal network and the formation of reverberation, which, as proposed earlier, may be important for the development of short-term memory and its consolidation into long-term memory.  相似文献   

11.
Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best “LFP proxy”, we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with “ground-truth” LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo.  相似文献   

12.
We present a novel computational model that detects temporal configurations of a given human neuronal pathway and constructs its artificial replication. This poses a great challenge since direct recordings from individual neurons are impossible in the human central nervous system and therefore the underlying neuronal pathway has to be considered as a black box. For tackling this challenge, we used a branch of complex systems modeling called artificial self-organization in which large sets of software entities interacting locally give rise to bottom-up collective behaviors. The result is an emergent model where each software entity represents an integrate-and-fire neuron. We then applied the model to the reflex responses of single motor units obtained from conscious human subjects. Experimental results show that the model recovers functionality of real human neuronal pathways by comparing it to appropriate surrogate data. What makes the model promising is the fact that, to the best of our knowledge, it is the first realistic model to self-wire an artificial neuronal network by efficiently combining neuroscience with artificial self-organization. Although there is no evidence yet of the model’s connectivity mapping onto the human connectivity, we anticipate this model will help neuroscientists to learn much more about human neuronal networks, and could also be used for predicting hypotheses to lead future experiments.  相似文献   

13.
14.
Rhythmic neuronal network activity underlies brain oscillations. To investigate how connected neuronal networks contribute to the emergence of the α-band and to the regulation of Up and Down states, we study a model based on synaptic short-term depression-facilitation with afterhyperpolarization (AHP). We found that the α-band is generated by the network behavior near the attractor of the Up-state. Coupling inhibitory and excitatory networks by reciprocal connections leads to the emergence of a stable α-band during the Up states, as reflected in the spectrogram. To better characterize the emergence and stability of thalamocortical oscillations containing α and δ rhythms during anesthesia, we model the interaction of two excitatory networks with one inhibitory network, showing that this minimal topology underlies the generation of a persistent α-band in the neuronal voltage characterized by dominant Up over Down states. Finally, we show that the emergence of the α-band appears when external inputs are suppressed, while fragmentation occurs at small synaptic noise or with increasing inhibitory inputs. To conclude, α-oscillations could result from the synaptic dynamics of interacting excitatory neuronal networks with and without AHP, a principle that could apply to other rhythms.  相似文献   

15.
During the computations performed by the nervous system, its ‘wiring diagram’—the map of its neurons and synaptic connections—is dynamically modified and supplemented by multiple actions of neuromodulators that can be so complex that they can be thought of as constituting a biochemical network that combines with the neuronal network to perform the computation. Thus, the neuronal wiring diagram alone is not sufficient to specify, and permit us to understand, the computation that underlies behaviour. Here I review how such modulatory networks operate, the problems that their existence poses for the experimental study and conceptual understanding of the computations performed by the nervous system, and how these problems may perhaps be solved and the computations understood by considering the structural and functional ‘logic’ of the modulatory networks.  相似文献   

16.
17.
With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite—explicit and implicit—were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented dendritic tree, and a damaged axon. The capabilities of the program to deal with large scale scenarios, segmented neuronal structures, and functional deficits under mechanical loading are specifically highlighted.  相似文献   

18.
The question of how the structure of a neuronal network affects its functionality has gained a lot of attention in neuroscience. However, the vast majority of the studies on structure-dynamics relationships consider few types of network structures and assess limited numbers of structural measures. In this in silico study, we employ a wide diversity of network topologies and search among many possibilities the aspects of structure that have the greatest effect on the network excitability. The network activity is simulated using two point-neuron models, where the neurons are activated by noisy fluctuation of the membrane potential and their connections are described by chemical synapse models, and statistics on the number and quality of the emergent network bursts are collected for each network type. We apply a prediction framework to the obtained data in order to find out the most relevant aspects of network structure. In this framework, predictors that use different sets of graph-theoretic measures are trained to estimate the activity properties, such as burst count or burst length, of the networks. The performances of these predictors are compared with each other. We show that the best performance in prediction of activity properties for networks with sharp in-degree distribution is obtained when the prediction is based on clustering coefficient. By contrast, for networks with broad in-degree distribution, the maximum eigenvalue of the connectivity graph gives the most accurate prediction. The results shown for small () networks hold with few exceptions when different neuron models, different choices of neuron population and different average degrees are applied. We confirm our conclusions using larger () networks as well. Our findings reveal the relevance of different aspects of network structure from the viewpoint of network excitability, and our integrative method could serve as a general framework for structure-dynamics studies in biosciences.  相似文献   

19.
20.
Capturing the response behavior of spiking neuron models with rate-based models facilitates the investigation of neuronal networks using powerful methods for rate-based network dynamics. To this end, we investigate the responses of two widely used neuron model types, the Izhikevich and augmented multi-adapative threshold (AMAT) models, to a range of spiking inputs ranging from step responses to natural spike data. We find (i) that linear-nonlinear firing rate models fitted to test data can be used to describe the firing-rate responses of AMAT and Izhikevich spiking neuron models in many cases; (ii) that firing-rate responses are generally too complex to be captured by first-order low-pass filters but require bandpass filters instead; (iii) that linear-nonlinear models capture the response of AMAT models better than of Izhikevich models; (iv) that the wide range of response types evoked by current-injection experiments collapses to few response types when neurons are driven by stationary or sinusoidally modulated Poisson input; and (v) that AMAT and Izhikevich models show different responses to spike input despite identical responses to current injections. Together, these findings suggest that rate-based models of network dynamics may capture a wider range of neuronal response properties by incorporating second-order bandpass filters fitted to responses of spiking model neurons. These models may contribute to bringing rate-based network modeling closer to the reality of biological neuronal networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号