首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The telomere capping protein TRF1 is a component of the multiprotein complex “shelterin,” which organizes the telomere into a high order structure. Besides telomere maintenance, telomere-associated proteins also have nontelomeric functions. For example, tankyrase 1 and TRF1 are required for the maintenance of faithful mitotic progression. However, the functional relevance of their centrosomal localization has not been established. Here, we report the identification of a TRF1-binding protein, TAP68, that interacts with TRF1 in mitotic cells. TAP68 contains two coiled-coil domains and a structural maintenance of chromosome motifs and co-localizes with TRF1 to telomeres during interphase. Immediately after nuclear envelope breakdown, TAP68 translocates toward the spindle poles followed by TRF1. Dissociation of TAP68 from the telomere is concurrent with the Nek2A-dependent phosphorylation at Thr-221. Biochemical characterization demonstrated that the first coiled-coil domain of TAP68 binds and recruits TRF1 to the centrosome. Inhibition of TAP68 expression by siRNA blocked the localization of TRF1 and tankyrase 1 to the centrosome. Furthermore, siRNA-mediated depletion of TAP68 perturbed faithful chromosome segregation and genomic stability. These findings suggest that TAP68 functions in mediating TRF1-tankyrase 1 localization to the centrosome and in mitotic regulation.  相似文献   

3.
GNL3L is an evolutionarily conserved high molecular weight GTP binding nucleolar protein belonging to HSR1-MMR1 subfamily of GTPases. The present investigation reveals that GNL3L is a nucleo-cytoplasmic shuttling protein and its export from the nucleus is sensitive to Leptomycin B. Deletion mutagenesis reveals that the C-terminal domain (amino acids 501–582) is necessary and sufficient for the export of GNL3L from the nucleus and the exchange of hydrophobic residues (M567, L570 and 572) within the C-terminal domain impairs this process. Results from the protein-protein interaction analysis indicate that GNL3L interaction with CRM1 is critical for its export from the nucleus. Ectopic expression of GNL3L leads to lesser accumulation of cells in the ‘G2/M’ phase of cell cycle whereas depletion of endogenous GNL3L results in ‘G2/M’ arrest. Interestingly, cell cycle analysis followed by BrdU labeling assay indicates that significantly increased DNA synthesis occurs in cells expressing nuclear export defective mutant (GNL3L∆NES) compared to the wild type or nuclear import defective GNL3L. Furthermore, increased hyperphosphorylation of Rb at Serine 780 and the upregulation of E2F1, cyclins A2 and E1 upon ectopic expression of GNL3L∆NES results in faster ‘S’ phase progression. Collectively, the present study provides evidence that GNL3L is exported from the nucleus in CRM1 dependent manner and the nuclear localization of GNL3L is important to promote ‘S’ phase progression during cell proliferation.  相似文献   

4.
Tankyrase-1 and -2 are closely related poly(ADP-ribose) polymerases that use an ankyrin-repeat domain to bind diverse proteins, including TRF (telomere-repeat binding factor)-1, IRAP (insulin-responsive aminopeptidase), and TAB182 (182-kDa tankyrase-binding protein). TRF1 binding allows tankyrase to regulate telomere dynamics in human cells, whereas IRAP binding presumably allows tankyrase to regulate the targeting of IRAP. The mechanism by which tankyrase binds to diverse proteins has not been investigated. Herein we describe a novel RXXPDG motif shared by IRAP, TAB182, and human TRF1 that mediates their binding to tankyrases. Interestingly, mouse TRF1 lacks this motif and thus does not bind either tankyrase-1 or -2. Using the ankyrin domain of tankyrase as a bait in a yeast two-hybrid screen, we also found the RXXPDG motif in six candidate tankyrase partners, including the nuclear/mitotic apparatus protein (NuMA). We verified NuMA as an RXXPDG-mediated partner of tankyrase and suggest that this interaction contributes to the known colocalization of tankyrase and NuMA at mitotic spindle poles.  相似文献   

5.
Telomeres are repetitive nucleoprotein structures at the ends of chromosomes. Like most genomic regions consisting of repetitive DNA, telomeres are fragile sites prone to replication fork stalling and generation of chromosomal instability. In particular, abrogation of the TRF1 telomere binding protein leads to stalled replication forks and aberrant telomere structures known as “multitelomeric signals”. Here, we report that TRF1 deficiency also leads to the formation of “ultra-fine bridges” (UFB) during mitosis, and to an increased time to complete mitosis mediated by the spindle assembly checkpoint proteins (SAC). We find that topoisomerase IIα (TopoIIα), an enzyme essential for resolution of DNA replication intermediates, binds telomeres in a TRF1-mediated manner. Indeed, similar to TRF1 abrogation, TopoIIα downregulation leads to telomere fragility and UFB, suggesting that these phenotypes are due to decreased TopoIIα at telomeres. We find that SAC proteins bind telomeres in vivo, and that this is disrupted upon TRF1 deletion. These findings suggest that TRF1 links TopoIIα and SAC proteins in a pathway that ensures correct telomere replication and mitotic segregation, unveiling how TRF1 protects from telomere fragility and mitotic defects.  相似文献   

6.
Pin2/TRF1 was independently identified as a telomeric DNA binding protein (TRF1) [1] and as a protein (Pin2) that can bind the mitotic kinase NIMA and suppress its ability to induce mitotic catastrophe [2, 3]. Pin2/TRF1 has been shown to bind telomeric DNA as a dimer [3-7] and to negatively regulate telomere length [8-11]. Interestingly, Pin2/TRF1 levels are regulated during the cell cycle, being increased in late G2 and mitosis and degraded as cells exit from mitosis [3]. Furthermore, overexpression of Pin2/TRF1 induces mitotic entry and then apoptosis [12]. This Pin2/TRF1 activity can be significantly potentiated by the microtubule-disrupting agent nocodazole [12] but is suppressed by phosphorylation of Pin2/TRF1 by ATM; this negative regulation is important for preventing apoptosis upon DNA damage [13]. These results suggest a role for Pin2/TRF1 in mitosis. However, nothing is known about how Pin2/TRF1 is involved in mitotic progression. Here, we describe a surprising physical interaction between Pin2/TRF1 and microtubules in a cell cycle-specific manner. Both expressed and endogenous Pin2/TRF1 proteins were localized to the mitotic spindle during mitosis. Furthermore, Pin2/TRF1 directly bound microtubules via its C-terminal domain. Moreover, Pin2/TRF1 also promoted microtubule polymerization in vitro. These results demonstrate for the first time a specific interaction between Pin2/TRF1 and microtubules in a mitosis-specific manner, and they suggest a new role for Pin2/TRF1 in modulating the function of microtubules during mitosis.  相似文献   

7.
Role of Pin2/TRF1 in telomere maintenance and cell cycle control   总被引:4,自引:0,他引:4  
Telomeres are specialized structures found at the extreme ends of chromosomes, which have many functions, including preserving genomic stability, maintaining cell proliferative capacity, and blocking the activation of DNA-damage cell cycle checkpoints. Deregulation of telomere length has been implicated in cancer and ageing. Telomere maintenance is tightly regulated by telomerase and many other telomere-associated proteins and is also closely linked to cell cycle control, especially mitotic regulation. However, little is known about the identity and function of the signaling molecules connecting telomere maintenance and cell cycle control. Pin2/TRF1 was originally identified as a protein bound to telomeric DNA (TRF1) and as a protein involved in mitotic regulation (Pin2). Pin2/TRF1 negatively regulates telomere length and importantly, its function is tightly regulated during the cell cycle, acting as an important regulator of mitosis. Recent identification of many Pin2/TRF1 upstream regulators and downstream targets has provided important clues to understanding the dual roles of Pin2/TRF1 in telomere maintenance and cell cycle control. These results have led us to propose that Pin2/TRF1 functions as a key molecule in connecting telomere maintenance and cell cycle control.  相似文献   

8.
Telomeres are specialized structures at the ends of chromosomes that consist of tandem repeats of the DNA sequence TTAGGG and several proteins that protect the DNA and regulate the plasticity of the telomeres. The telomere-associated protein TRF2 (telomeric repeat binding factor 2) is critical for the control of telomere structure and function; TRF2 dysfunction results in the exposure of the telomere ends and activation of ATM (ataxia telangiectasin mutated)-mediated DNA damage response. Recent findings suggest that telomere attrition can cause senescence or apoptosis of mitotic cells, but the function of telomeres in differentiated neurons is unknown. Here, we examined the impact of telomere dysfunction via TRF2 inhibition in neurons (primary embryonic hippocampal neurons) and mitotic neural cells (astrocytes and neuroblastoma cells). We demonstrate that telomere dysfunction induced by adenovirus-mediated expression of dominant-negative TRF2 (DN-TRF2) triggers a DNA damage response involving the formation of nuclear foci containing phosphorylated histone H2AX and activated ATM in each cell type. In mitotic neural cells DN-TRF2 induced activation of both p53 and p21 and senescence (as indicated by an up-regulation of beta-galactosidase). In contrast, in neurons DN-TRF2 increased p21, but neither p53 nor beta-galactosidase was induced. In addition, TRF2 inhibition enhanced the morphological, molecular and biophysical differentiation of hippocampal neurons. These findings demonstrate divergent molecular and physiological responses to telomere dysfunction in mitotic neural cells and neurons, indicate a role for TRF2 in regulating neuronal differentiation, and suggest a potential therapeutic application of inhibition of TRF2 function in the treatment of neural tumors.  相似文献   

9.
The human telomeric protein TRF1 is a component of the six-subunit protein complex shelterin, which provides telomere protection by organizing the telomere into a high-order structure. TRF1 functions as a negative regulator of telomere length by controlling the access of telomerase to telomeres. Thus, the cellular abundance of TRF1 at telomeres should be maintained and tightly regulated to ensure proper telomere function. Here, we identify U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 (U2AF65), an essential pre-mRNA splicing factor, as a novel TRF1-interacting protein. U2AF65 interacts with TRF1 in vitro and in vivo and is capable of stabilizing TRF1 protein by inhibiting its ubiquitin-dependent proteolysis. We also found that U2AF65 interferes with the interaction between TRF1 and Fbx4, an E3 ubiquitin ligase for TRF1. Depletion of endogenous U2AF65 expression by short interfering RNA (siRNA) reduced the stability of endogenous TRF1 whereas overexpression of U2AF65 significantly extended the half-life of TRF1. These findings demonstrate that U2AF65 plays a critical role in regulating the level of TRF1 through physical interaction and ubiquitin-mediated proteolysis. Hence, U2AF65 represents a new route for modulating TRF1 function at telomeres.  相似文献   

10.
A variety of G-proteins and GTPases are known to be involved in nucleolar function. We describe here a new evolutionarily conserved putative human GTPase, guanine nucleotide binding protein-like 3-like (GNL3L). Genes encoding proteins related to GNL3L are present in bacteria and yeast to metazoa and suggests its critical role in development. Conserved domain search analysis revealed that the GNL3L contains a circularly permuted G-motif described by a G5-G4-G1-G2-G3 pattern similar to the HSR1/MMR1 GTP-binding protein subfamily. Highly conserved and critical residues were identified from a three-dimensional structural model obtained for GNL3L using the crystal structure of an Ylqf GTPase from Bacillus subtilis. We demonstrate here that GNL3L is transported into the nucleolus by a novel lysine-rich nucleolar localization signal (NoLS) residing within 1-50 amino acid residues. NoLS identified here is necessary and sufficient to target the heterologous proteins to the nucleolus. We show for the first time that the lysine-rich targeting signal interacts with the nuclear transport receptor, importin-beta and transports GNL3L into the nucleolus. Interestingly, depletion of intracellular GTP blocks GNL3L accumulation into the nucleolar compartment. Furthermore, mutations within the G-domains alter the GTP binding ability of GNL3L and abrogate wild-type nucleolar retention even in the presence of functional NoLS, suggesting that the efficient nucleolar retention of GNL3L involves activities of both basic NoLS and GTP-binding domains. Collectively, these data suggest that GNL3L is composed of distinct modules, each of which plays a specific role in molecular interactions for its nucleolar retention and subsequent function(s) within the nucleolus.  相似文献   

11.
12.
Nakamura M  Zhou XZ  Kishi S  Lu KP 《FEBS letters》2002,514(2-3):193-198
Pin2/TRF1 was independently identified as a telomeric DNA-binding protein (TRF1) that regulates telomere length, and as a protein (Pin2) that can bind the mitotic kinase NIMA and suppress its lethal phenotype. We have previously demonstrated that Pin2/TRF1 levels are cell cycle-regulated and its overexpression induces mitotic arrest and then apoptosis. This Pin2/TRF1 activity can be potentiated by microtubule-disrupting agents, but suppressed by phosphorylation of Pin2/TRF1 by ATM; this negative regulation is critical in mediating for many, but not all, ATM-dependent phenotypes. Interestingly, Pin2/TRF1 specifically localizes to mitotic spindles in mitotic cells and affects the microtubule polymerization in vitro. These results suggest a role of Pin2/TRF1 in mitosis. However, nothing is known about whether Pin2/TRF1 affects the spindle function in mitotic progression. Here we characterized a new Pin2/TRF1-interacting protein, EB1, that was originally identified in our yeast two-hybrid screen. Pin2/TRF1 bound EB1 both in vitro and in vivo and they also co-localize at the mitotic spindle in cells. Furthermore, EB1 inhibits the ability of Pin2/TRF1 to promote microtubule polymerization in vitro. Given that EB1 is a microtubule plus end-binding protein, these results further confirm a specific interaction between Pin2/TRF1 and the mitotic spindle. More importantly, we have shown that inhibition of Pin2/TRF1 in ataxia-telangiectasia cells is able to fully restore their mitotic spindle defect in response to microtubule disruption, demonstrating for the first time a functional involvement of Pin2/TRF1 in mitotic spindle regulation.  相似文献   

13.
Telomeres are intrinsically difficult-to-replicate region of eukaryotic chromosomes. Telomeric repeat binding factor 2 (TRF2) binds to origin recognition complex (ORC) to facilitate the loading of ORC and the replicative helicase MCM complex onto DNA at telomeres. However, the biological significance of the TRF2–ORC interaction for telomere maintenance remains largely elusive. Here, we employed a TRF2 mutant with mutations in two acidic acid residues (E111A and E112A) that inhibited the TRF2–ORC interaction in human cells. The TRF2 mutant was impaired in ORC recruitment to telomeres and showed increased replication stress-associated telomeric DNA damage and telomere instability. Furthermore, overexpression of an ORC1 fragment (amino acids 244–511), which competitively inhibited the TRF2–ORC interaction, increased telomeric DNA damage under replication stress conditions. Taken together, these findings suggest that TRF2-mediated ORC recruitment contributes to the suppression of telomere instability.  相似文献   

14.
Forwood JK  Jans DA 《Biochemistry》2002,41(30):9333-9340
Telomere repeat factor 1 (TRF1) regulates the steady-state length of chromosomes, whereby its overexpression results in telomere shortening while dominant negative TRF1 mutations can lead to telomere elongation, which is linked to cell immortalization/transformation. Although present in the nucleus at mammalian chromosomal ends during interphase and mitosis, nothing is known of the mechanism by which TRF1 enters the nucleus or how its nuclear levels may be regulated and the relevance of this, in turn, to telomere length and cell immortalization. Here we examine the nuclear import mechanism of TRF by expressing and purifying a recombinant TRF1-GFP (green fluorescent protein) fusion protein that is functional in terms of being able to bind telomeric DNA specifically as shown using a novel, quantitative double-label gel mobility shift assay. We quantitate the ability of TRF1-GFP to accumulate in the nucleus using real time confocal laser scanning microscopy, showing that the nuclear import pathway of TRF1 is mediated by importin (Imp) beta1 and Ran. Imp beta is shown to bind directly to TRF1 with nanomolar affinity using native gel electrophoretic and fluorescence polarization (FP) approaches; FP experiments also demonstrate that Imp beta residues 1-380 are responsible for TRF1 binding. Intriguingly, when dimerized to Imp beta, Imp alpha was found to inhibit Imp beta-mediated nuclear accumulation, although not affecting Imp beta binding to TRF1. The study represents the first elucidation of the nuclear transport mechanism of TRF1; that its nuclear import is mediated directly by Imp beta but inhibited by Imp alpha may represent a novel regulatory mechanism, with potential relevance to oncogenesis.  相似文献   

15.
Telomere mutants have been well studied with respect to telomerase and the role of telomere binding proteins, but they have not been used to explore how a downstream morphogenic event is related to the mutated telomeric DNA. We report that alterations at the telomeres can have profound consequences on organellar morphogenesis. Specifically, a telomerase RNA mutation termed ter1-43AA results in the loss of germ line micronuclear telomeres in the binucleate protozoan Tetrahymena thermophila. These cells also display a micronuclear mitotic arrest, characterized by an extreme delay in anaphase with an elongated, condensed chromatin and a mitotic spindle apparatus. This anaphase defect suggests telomere fusions and consequently a spindle rather than a DNA damage checkpoint. Most surprisingly, these mutants exhibit unique, dramatic defects in the formation of the cell's oral apparatus. We suggest that micronuclear telomere loss leads to a “dynamic pause” in the program of cortical development, which may reveal an unusual cell cycle checkpoint.  相似文献   

16.
Telomeric repeat binding factor 2 (TRF2) plays an important role in protecting telomeres from being recognized as DNA breaks. TRF2 performs its telomere protecting functions partially by recruiting a number of accessory proteins to telomeres through its TRF homology (TFRH) domain. Identification of small molecular compounds which can bind to the TRFH domain of TRF2 and block the interactions between TRF2 and its associated proteins is crucial for elucidating the molecular mechanisms of these protein–protein interactions. Using a previously identified peptidic mimetic of ApolloTBM as a lead compound, we designed and synthesized a series of novel TRF2 inhibitors by non-peptidic modifications of the N-terminal residues. These compounds can maintain the binding affinities to TRF2 but have much reduced peptidic characteristics compared to the lead compound.  相似文献   

17.
The TRF2-Rap1 complex suppresses non-homologous end joining and interacts with DNAPK-C to prevent end joining. We previously demonstrated that hTRF2 is a double strand telomere binding protein that forms t-loops in vitro and recognizes three- and four-way junctions independent of DNA sequence. How the DNA binding characteristics of hTRF2 to DNA is altered in the presence of hRap1 however is not known. Here we utilized EM and quantitative gel retardation to characterize the DNA binding properties of hRap1 and the TRF2-Rap1 complex. Both gel filtration chromatography and mass analysis from two-dimensional projections showed that the TRF2-Rap1 complex exists in solution and binds to DNA as a complex consisting of four monomers each of hRap1 and hTRF2. EM revealed for the first time that hRap1 binds to DNA templates in the absence of hTRF2 with a preference for double strand-single strand junctions in a sequence independent manner. When hTRF2 and hRap1 are in a complex, its affinity for ds telomeric sequences is 2-fold higher than TRF2 alone and more than 10-fold higher for telomeric 3′ ends. This suggests that as hTRF2 recruits hRap1 to telomeric sequences, hRap1 alters the affinity of hTRF2 and its binding preference on telomeric DNA. Moreover, the TRF2-Rap1 complex has higher ability to re-model telomeric DNA than either component alone. This finding underlies the importance of complex formation between hRap1 and hTRF2 for telomere function and end protection.  相似文献   

18.
Chromosome stability is primarily determined by telomere length. TRF1 is the core subunit of shelterin that plays a critical role in telomere organization and replication. However, the dynamics of TRF1 in scenarios of telomere-processing activities remain elusive. Using single-molecule magnetic tweezers, we here investigated the dynamics of TRF1 upon organizing a human telomere and the protein-DNA interactions at a moving telomeric fork. We first developed a method to obtain telomeres from human cells for directly measuring the telomere length by single-molecule force spectroscopy. Next, we examined the compaction and decompaction of a telomere by TRF1 dimers. TRF1 dissociates from a compacted telomere with heterogenous loops in ∼20 s. We also found a negative correlation between the number of telomeric loops and loop sizes. We further characterized the dynamics of TRF1 at a telomeric DNA fork. With binding energies of 11 kBT, TRF1 can modulate the forward and backward steps of DNA fork movements by 2–9 s at a critical force of F1/2, temporarily maintaining the telomeric fork open. Our results shed light on the mechanisms of how TRF1 organizes human telomeres and facilitates the efficient replication of telomeric DNA. Our work will help future research on the chemical biology of telomeres and shelterin-targeted drug discovery.  相似文献   

19.
A cancer is a robustly evolving cell population originating from a normal diploid cell. Improper chromosome segregation causes aneuploidy, a driving force of cancer development and malignant progression. Telomeric repeat binding factor 1 (TRF1) has been established as a telomeric protein that negatively regulates telomere elongation by telomerase and promotes efficient DNA replication at telomeres. Intriguingly, overexpression of a mitotic kinase, Aurora-A, compromises efficient microtubule-kinetochore attachment in a TRF1-dependent manner. However, the precise role of TRF1 in mitosis remains elusive. Here we demonstrate that TRF1 is required for the centromeric function of Aurora-B, which ensures proper chromosome segregation. TRF1 depletion abolishes centromeric recruitment of Aurora-B and loosens sister centromere cohesion, resulting in the induction of merotelic kinetochore attachments, lagging chromosomes, and micronuclei. Accordingly, an absence of TRF1 in human and mouse diploid cells induces aneuploidy. These phenomena seem to be telomere independent, because a telomere-unbound TRF1 mutant can suppress the TRF1 knockdown phenotype. These observations indicate that TRF1 regulates the rigidity of the microtubule-kinetochore attachment, contributing to proper chromosome segregation and the maintenance of genomic integrity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号