首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

In idiopathic Parkinson's disease (IPD) transcranial sonography (TCS) represents an alternative diagnostic method to verify clinical diagnosis. Although the phenomenon of an increased echogenicity of the Substantia nigra (SN) is well known this method is still not widly used in the diagnostic workup. Until now reliability of this method is still a matter of debate, partly because data only existed from a few laboratories using the same ultrasound machine. Therefore our study was conducted to test the reliability of this method by using a different ultrasound device and examining a large population of control and IPD subjects by two examiners to calculate interobserver reliability.  相似文献   

2.
Smith SL  Timmis J 《Bio Systems》2008,94(1-2):34-46
This paper presents a novel evolutionary algorithm inspired by protein/substrate binding exploited in enzyme genetic programming (EGP) and artificial immune networks. The immune network-inspired evolutionary algorithm has been developed in direct response to an application in clinical neurology, the diagnosis of Parkinson's disease. The inspiration for, and implementation of the algorithm is described and its performance to the application area considered.  相似文献   

3.
帕金森病(PD)早期临床表现不典型,如能早期诊断、积极治疗,有可能减缓病程进展.因此,早期明确诊断、积极治疗是非常必要的.经颅超声成像(TCS)是一种新的非侵入性超声成像技术,发现PD患者的黑质(SN)区回声增强,认为这些回声增强区的性质与SN区的铁含量增高有关(1).结合近几年国外对TCS检查在PD早期诊断及鉴别诊断中的应用、优点及局限性的研究做一综述.  相似文献   

4.
5.
The diagnosis of Parkinson's disease (PD) still lacks objective diagnostic markers independent of clinical criteria. Cerebrospinal fluid (CSF) samples from 36 PD and 42 age‐matched control patients were subjected to inductively coupled plasma‐sector field mass spectrometry and a total of 28 different elements were quantified. Different machine learning algorithms were applied to the dataset to identify a discriminating set of elements yielding a novel biomarker signature. Using 19 stably detected elements, the extreme gradient tree boosting model showed the best performance in the discrimination of PD and control patients with high specificity and sensitivity (78.6% and 83.3%, respectively), re‐classifying the training data to 100%. The 10 times 10‐fold cross‐validation yielded a good area under the receiver operating characteristic curve of 0.83. Arsenic, magnesium, and selenium all showed significantly higher mean CSF levels in the PD group compared to the control group (p  = 0.01, p  = 0.04, and p  = 0.03). Reducing the number of elements to a discriminating minimum, we identified an elemental cluster (Se, Fe, As, Ni, Mg, Sr), which most importantly contributed to the sample discrimination. Selenium was identified as the element with the highest impact within this cluster directly followed by iron. After prospective validation, this elemental fingerprint in the CSF could have the potential to be used as independent biomarker for the diagnosis of PD. Next to their value as a biomarker, these data also argue for a prominent role of these highly discriminating six elements in the pathogenesis of PD.

  相似文献   

6.
ObjectiveThe purpose of this study is to identify the biomarkers for early diagnosis of Parkinson's disease (PD) by multi-omics joint analysis, so as to identify the biomarkers for early diagnosis of PD, and to help clinicians make early diagnosis and treatment.MethodsIn this study, mice are taken as the study subjects. The model of PD mice is established, and then lymphocyte, striatum, substantia nigra protein and proteolysis are extracted. After that, the experiments of protein imprinting and 418O labeling are carried out. Mass Spectrometry (MS) analysis technology is mainly used to study proteomics and to analyze the quantitative and qualitative situation of differential proteins in striatum, substantia nigra protein and lymphocyte. By this method, biomarkers for early diagnosis of PD are analyzed and identified.ResultsThe biomarkers of Parkinson's early onset are related to the same quantitative differential expression of lymphocyte, striatum, substantia nigra protein, lymphocyte and substantia nigra.ConclusionThis experimental method can analyze and identify the biomarkers of early diagnosis of PD, help to explore the pathophysiology and pathogenesis of PD, effectively help clinicians make timely diagnosis in advance, and improve the prevention and treatment effect of the disease.  相似文献   

7.
IntroductionProgressive supranuclear palsy (PSP) is a syndrome characterized by progressive parkinsonism with early falls due to postural instability, typically vertical gaze supranuclear ophthalmoplegia, pseudobulbar dysfunction, neck dystonia and upper trunk rigidity as well as mild cognitive dysfunction. Progressive supranuclear palsy must be differentiated from Parkinson's disease taking into account several so-called red flags.Materials and methodsWe report a case series hallmarked by gait abnormalities, falls and bradykinesia in which Parkinson's disease was the initial diagnosis.ResultsDue to a torpid clinical course, magnetic resonance imaging (MRI) was performed demonstrating midbrain atrophy, highly suggestive of progressive supranuclear palsy.ConclusionThe neuroradiological exams (magnetic resonance imaging, single photon emission computer tomography, and positron emission tomography) can be useful for diagnosis of PSP. Treatment with levodopa should be considered, especially in patients with a more parkinsonian phenotype.  相似文献   

8.
Gene therapy for Parkinson's disease   总被引:4,自引:0,他引:4  
Gene therapy is a potentially powerful approach to the treatment of neurological diseases. The discovery of neurotrophic factors inhibiting neurodegenerative processes and neurotransmitter-synthesizing enzymes provides the basis for current gene therapy strategies for Parkinson's disease. Genes can be transferred by viral or nonviral vectors. Of the various possible vectors, recombinant retroviruses are the most efficient for genetic modification of cells in vitro that can thereafter be used for transplantation (ex vivo gene therapy approach). Recently, in vivo gene transfer to the brain has been developed using adenovirus vectors. One of the advantages of recombinant adenovirus is that it can transduced both quiescent and actively dividing cells, thereby allowing both direct in vivo gene transfer and ex vivo gene transfer to neural cells. Probably because the brain is partially protected from the immune system, the expression of adenoviral vectors persists for several months with little inflammation. Novel therapeutic tools, such as vectors for gene therapy have to be evaluated in terms of efficacy and safety for future clinical trials. These vectors still need to be improved to allow long-term and possibly regulatable expression of the transgene.  相似文献   

9.
Parkinson's disease (PD) is a debilitating neurodegenerative disorder arising from loss of dopaminergic neurons in the substantia nigra pars compacta and subsequent depletion of striatal dopamine levels, which results in distressing motor symptoms. The current standard pharmacological treatment for PD is direct replacement of dopamine by treatment with its precursor, levodopa (L-dopa). However, this does not significantly alter disease progression and might contribute to the ongoing pathology. Several features of PD make this disease one of the most promising targets for clinical gene therapy of any neurological disease. The confinement of the major pathology to a compact, localised neuronal population and the anatomy of the basal ganglia circuitry mean that global gene transfer is not required and there are well-defined sites for gene transfer. The multifactorial aetiology of idiopathic PD means that it is unlikely any single gene will cure the disease, and as a result at least three separate gene-transfer strategies are currently being pursued: transfer of genes for enzymes involved in dopamine production; transfer of genes for growth factors involved in dopaminergic cell survival and regeneration; and transfer of genes to reset neuronal circuitry by switching cellular phenotype. The merits of these strategies are discussed here, along with remaining hurdles that might impede transfer of gene therapy technology to the clinic as a treatment for PD.  相似文献   

10.
Parkinson's disease (PD) is a common neurodegenerative disorder caused by the progressive degeneration of the nigrostriatal dopaminergic pathway. The resulting loss of dopamine neurotransmission is responsible for the symptoms of the disease. Available treatments are initially successful in treating PD symptoms; however, their long-term use is associated with complications and they cannot stop the neurodegeneration. Current research aims at developing new therapies to halt/reverse the neurodegenerative process, rather than treating symptoms. Neurotrophic factors are proteins critical for maintenance and protection of neurones in the developing and adult brain. Several neurotrophic factors have been investigated for their protective effects on dopaminergic neurones. Here we review some of the most promising factors and provide an update on their status in clinical trials.  相似文献   

11.
Mitophagy: the latest problem for Parkinson's disease   总被引:1,自引:0,他引:1  
Parkinson's disease (PD) is a common neurodegenerative disorder of unknown cause. Some familial forms of PD are provoked by mutations in the genes encoding for the PTEN (phosphatase and tensin homolog)-induced putative kinase-1 (PINK1) and Parkin. Mounting evidence indicates that PINK1 and Parkin might function in concert to modulate mitochondrial degradation, termed mitophagy. However, the molecular mechanisms by which PINK1/Parkin affect mitophagy are just beginning to be elucidated. Herein, we review the main advances in our understanding of the PINK1/Parkin pathway. Because of the phenotypic similarities among the different forms of PD, a better understanding of PINK1/Parkin biology might have far-reaching pathogenic and therapeutic implications for both the inherited and the sporadic forms of PD.  相似文献   

12.
13.
The G2019S mutation in the LRRK2 gene, the most common known cause of Parkinson's disease (PD), will soon be widely available as a molecular clinical test for PD. The objective of this study was to assess performance characteristics of G2019S as a clinical test for PD in the setting of typical movement disorder clinics in the United States. Subjects included 1,518 sequentially recruited PD patients from seven movement disorder clinics in the United States, and 1,733 unaffected subjects. All 3,251 subjects were genotyped for the G2019S mutation using a TaqMan assay, and mutations were verified by direct sequencing. Test validity estimates were calculated using standard methods. A total of 20/1518 patients and 1/1733 controls carried the G2019S mutation. Specificity was 99.9% (95% CI, 99.6-100%), sensitivity was 1.3% (0.8-2.1%), and the positive likelihood ratio was 22.8. A positive family history of PD increased the positive likelihood ratio to 82.5. Information on gender, age at disease onset, or age at testing did not improve test performance. The gene test was highly accurate in classifying mutation carriers as PD, but it performed poorly in predicting the phenotype of non-mutation carriers. A G2019S molecular test for PD would be highly specific, technically simple, and inexpensive. Test interpretation is straightforward when used for diagnosis of symptomatic individuals, but is more complex for risk assessment and predictive testing in asymptomatic individuals. Test results can have psychological, social, and economical ramifications; thus, proper counseling is essential.  相似文献   

14.
帕金森病动物模型:揭开人类帕金森病奥秘的钥匙   总被引:2,自引:0,他引:2  
杨宏彦  王晓民 《生命科学》2002,14(5):275-278,260
帕金森病(Parkinson‘s disease,PD)是一种以黑质致密部多巴胺能神经元的特异性,进行性坏死为特征的神经系统退行性疾病,尽管PD的发病原因还不十分清楚,目前的证据表明环境因素和遗传因素是PD可能的主要致病因素,针对这两大因素,神经科学家们发展了很多制造PD动物模型的方法,MPTP(1-甲基-4-氨基-1,2,3,6-四氢吡啶)模型是目前比较经典的模型。而新近兴起的基因工程模型亦具有广阔的应用前景咯种PD动物模型推动着人们对PD认识的深入和治疗手段的发展,恰当的动物模型必将成为最终揭开人类帕金森病奥秘的钥匙。  相似文献   

15.
帕金森病是常见的神经退行性疾病,其发病原因至今尚未明确,目前的治疗方法价格昂贵、效果差且副作用大。帕金森病患者常见胃肠道功能障碍,帕金森病和肠道菌群之间的关联已得到实验证实,患者有望通过益生菌改善肠道菌群达到治疗的目的。工程益生菌的出现使得人们可以按照自己的意愿改造益生菌,提高其稳定性和靶向性,展现出其特有的应用潜力。本文将从益生菌治疗帕金森病的研究现状出发,阐述益生菌治疗帕金森病的可能机制,进一步分析工程益生菌治疗帕金森病的可行性,为该疾病的安全治疗提供新的思路。  相似文献   

16.
Deep brain stimulation at high frequency was first used in 1997 to replace thalamotomy in treating the characteristic tremor of Parkinson's disease, and has subsequently been applied to the pallidum and the subthalamic nucleus. The subthalamic nucleus is a key node in the functional control of motor activity in the basal ganglia. Its inhibition suppresses symptoms in animal models of Parkinson's disease, and high frequency chronic stimulation does the same in human patients. Acute and long-term results after deep brain stimulation show a dramatic and stable improvement of a patient's clinical condition, which mimics the effects of levodopa treatment. The mechanism of action may involve a functional disruption of the abnormal neural messages associated with the disease. Long-term changes, neural plasticity and neural protection might be induced in the network. Similar effects of stimulation and lesioning have led to the extension of this technique for other targets and diseases.  相似文献   

17.
Proteome analysis is usually performed by separating complex cellular protein extracts by two-dimensional-electrophoresis followed by protein identification using mass spectrometry. In this way proteins are compared from normal and diseased tissue in order to detect disease related protein changes. In a strict sense, however, this procedure cannot be called proteome analysis: the tools of proteomics are used just to detect some interesting proteins which are then investigated by protein chemistry as usual. Real proteome research would be studying the cellular proteome as a whole, its composition, organization and its kind of action. At present however, we have no idea how a proteome works as a whole; we have not even a theory about that. If we would know how the proteome of a cell type is arranged, we probably would alter our strategy to detect and analyze disease-related proteins. I will present a theory of proteomics and show some results from our laboratory which support this theory. The results come from investigations of the mouse brain proteome and include mouse models for neurodegenerative diseases.  相似文献   

18.
Engineering neurons for Parkinson's disease.   总被引:2,自引:0,他引:2  
  相似文献   

19.
New animal models for Parkinson's disease   总被引:2,自引:0,他引:2  
Dawson TM 《Cell》2000,101(2):115-118
  相似文献   

20.
Protocol for the MPTP mouse model of Parkinson's disease   总被引:1,自引:0,他引:1  
This protocol describes our method of producing a reliable mouse model of Parkinson's disease (PD) using the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We discuss the particulars of the model, provide key references and outline what investigators need to know to develop the MPTP mouse model of PD safely and successfully. Completion of this protocol depends on the regimen of MPTP used and on the actual planned studies, which often range from 7 to 30 d. This protocol calls for implementation of safety measures and for the acquisition of several pieces of equipment, which are a one-time investment worth making if one elects to use this model on a regular basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号