首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An experiment is undertaken to investigate the relationship between "sighting" and motor dominance. A review of recent work on the neurophysiology of vision is carried out and an attempt to explain ocular dominance using this is made.  相似文献   

2.
Intact male rats were tested on two successive weekly tests with females to determine their level of sexual activity. Nuclear estrogen receptor content was measured in specific brain regions of individual sexually responsive and sexually nonresponsive males. Sexually nonresponsive male rats had significantly reduced nuclear estrogen receptor levels in the preoptic area compared to sexually responsive males. Sexually active males did not differ from inactive males in nuclear estrogen receptors in the medialbasal hypothalamus.  相似文献   

3.
No evidence for a genetic basis of tongue rolling or hand clasping.   总被引:1,自引:0,他引:1  
  相似文献   

4.
The observed northern limit of the deciduous forest formation in North America is shown to agree closely with the reported –40°C average annual minimum temperature isotherm. This indicates that supercooling as a means of resisting freezing stresses may set a physiological limit on the northern expansion of the deciduous forest formation.Abbreviation LTE= Low Temperature Exotherm  相似文献   

5.
The physiological basis of the Eijkman elevated-temperature test for differentiating fecal from nonfecal coliforms was investigated. Manometric studies indicated that the inhibitory effect upon growth and metabolism in a nonfecal coliform at 44.5 degrees C involved cellular components common to both aerobic and fermentative metabolism of lactose. Radioactive substrate incorporation experiments implicated cell membrane function as a principal focus for temperature sensitivity at 44.5 degrees C. A temperature increase from 35 to 44.5 degrees C drastically reduced the rates of [14C]glucose uptake in nonfecal coliforms, whereas those of fecal coliforms were essentially unchanged. In addition, relatively low levels of nonfecal coliform beta-galactosidase activity coupled with thermal inactivation of this enzyme at a comparatively low temperature may also inhibit growth and metabolism of nonfecal coliforms at the elevated temperature.  相似文献   

6.
The physiological basis of bryophyte production   总被引:6,自引:0,他引:6  
In the main features of their carbon metabolism and physiological responses, bryophytes behave as normal C:) plants. However, their small size and frequent poikilohydric habit have important effects on the context in which these characteristics are expressed, and on their environmental physiology. Many are tolerant of drying out to low water contents (c. 5–10%, of dry weight). Photosynthesis declines rapidly with water loss, and resumes with greater or lesser delay on remoistening. The rate and completeness of recovery depend on the intensity and duration of desiccation, and on drought-hardening (perhaps largely related to protection of cell components from oxidative damage) which lakes place as the bryophyte dries. Most bryophytes, including species of well-illuminated habitats, function in effect as shade plants, with low chlorophyll a/b ratios, and become light-saturated at relatively low irradiance. Boundary-layer resistance is critically important in determining water loss from bryophytes in many situations. The time for which a poikilohydric species can photosynthesize after rain is determined by storage capacity and rate of water loss, both strongly influenced by growth-form. In sheltered habitats with extensive bryophyte cover water loss is largely determined by radiation balance, and may be very slow in deeply shaded places. Bryophyte growth-forms must represent an adaptive balance between water economy and needs for light capture and carbon and mineral nutrient acquisition.  相似文献   

7.
A breeding colony of Red-billed queleas, established in N.E. Nigeria under poor feeding conditions occasioned by drought, was abandoned after the eggs had been laid. Inadequate energy intake caused males to leave before completing the nests. This resulted in thousands of eggs being laid through bottomless nests onto the ground. The females left progressively as they completed their clutches; below normal protein- and fat-reserves probably combined to induce abandonment. Some individuals, predominantly females, died on the last night of occupation. Death apparently resulted from an adverse nutritional balance at a crucial stage in the laying sequence. The main value of the fat reserves in females beginning to lay appears to be in allowing maximal foraging for protein.  相似文献   

8.
Ohne Zusammenfassung
Selection in Cladocera on the basis of a physiological character
  相似文献   

9.
10.
Using two ecotypes of Stellaria longipes with contrasting responses to shade, we found that plants can differ in their responses to similar light cues, reflecting adaptations to their natural habitat. It was also observed that the plants could distinguish between distinct shade signals. Furthermore, the activity of wall modifying proteins, expansins and xyloglucan endotransglucosylase/hydrolase(s) (XTHs) was regulated during these responses. However, only expansin activity and gene expression profiles correlated with observed growth trends. The differential expression of expansins was light signal specific and ecotype specific and could account for both the trends in growth and their magnitude. We have thus established a potential molecular basis for the observed plasticity in responses to shade.Key words: shade avoidance, cell wall modification, expansins, XTHs, Stellaria longipes, phenotypic plasticity, light quality  相似文献   

11.
12.
13.
Folgheraiter M  Gini G 《Bio Systems》2004,76(1-3):65-74
In this paper, we illustrate the low level reflex control used to govern an anthropomorphic artificial hand. The paper develops the position and stiffness control strategy based on dynamic artificial neurons able to simulate the neurons acting in the human reflex control. The controller has a hierarchical structure. At the lowest level there are the receptors able to convert the analogical signal into a neural impulsive signal appropriate to govern the reflex control neurons. Immediately upon it, the artificial motoneurons set the actuators inner pressure to control the finger joint position and moment. Other auxiliary neurons in combination with the motoneurons are able to set the finger stiffness and emulate the inverse myotatic reflex control. Stiffness modulation is important both to save energy during task execution, and to manage objects made of different materials. The inverse myotatic reflex is able to protect the hand from possible harmful external actions. The paper also presents the dynamic model of the joints and of the artificial muscles actuating Blackfingers, our artificial hand. This new type of neural control has been simulated on the Blackfingers model; the results indicate that the developed control is very flexible and efficient for all kind of joints present in the humanoid hand.  相似文献   

14.
15.
Summary Isolated segments of hamster small intestine were perfused with oxygenated salt-fluorocarbon emulsions with or without 10–25mm glucose, alanine or leucine. Resistances of inter-cellular occluding junctions and of lateral spaces and the distributed capacitance of epithelial plasma membranes were estimated from steady-state transepithelial impedances at frequencies from 0.01–10 kHz. The segments were then fixedin situ with isorheic 2.5% glutaraldehyde while continuing to measure impedance. This method of fixation increased the resistance of lateral spaces but had little effect on the resistance of occluding junctions or on membrane capacitance. The large decreases of impedance induced by glucose or amino acids were preserved in fixed tissue and could therefore be correlated with changes in structure. The observed changes of impedance were interpreted as decreased resistance of occluding junctions and lateral spaces together with increased exposed surface of lateral membranes (capacitance). Glucose, alanine or leucine induced expansion of lateral intercellular spaces as seen by light and electron microscopy. Large dilatations within absorptive cell occluding junctions were revealed by electron microscopy. Freeze-fracture analysis revealed that these dilatations consisted of expansions of compartments bounded by strands/grooves. These solute-induced structural alterations were also associated with condensation of microfilaments in the zone of the perijunctional actomyosin ring, typical of enhanced ring tension. Similar anatomical changes were found in epithelia fixedin situ at 38°C during luminal perfusion with glucose in blood-circulated intestinal segments of anesthetized animals. These structural changes support the hypothesis that Na-coupled solute transport triggers contraction of perijunctional actomyosin, thereby increasing junctional permeability and enhancing absorption of nutrients by solvent drag as described in the two accompanying papers.  相似文献   

16.
Isolated segments of hamster small intestine were perfused with oxygenated salt-fluorocarbon emulsions with or without 10-25 mM glucose, alanine or leucine. Resistances of intercellular occluding junctions and of lateral spaces and the distributed capacitance of epithelial plasma membranes were estimated from steady-state transepithelial impedances at frequencies from 0.01-10 kHz. The segments were then fixed in situ with isorheic 2.5% glutaraldehyde while continuing to measure impedance. This method of fixation increased the resistance of lateral spaces but had little effect on the resistance of occluding junctions or on membrane capacitance. The large decreases of impedance induced by glucose or amino acids were preserved in fixed tissue and could therefore be correlated with changes in structure. The observed changes of impedance were interpreted as decreased resistance of occluding junctions and lateral spaces together with increased exposed surface of lateral membranes (capacitance). Glucose, alanine or leucine induced expansion of lateral intercellular spaces as seen by light and electron microscopy. Large dilatations within absorptive cell occluding junctions were revealed by electron microscopy. Freeze-fracture analysis revealed that these dilatations consisted of expansions of compartments bounded by strands/grooves. These solute-induced structural alterations were also associated with condensation of microfilaments in the zone of the perijunctional actomyosin ring, typical of enhanced ring tension. Similar anatomical changes were found in epithelia fixed in situ at 38 degrees C during luminal perfusion with glucose in blood-circulated intestinal segments of anesthetized animals. These structural changes support the hypothesis that Na-coupled solute transport triggers contraction of perijunctional actomyosin, thereby increasing junctional permeability and enhancing absorption of nutrients by solvent drag as described in the two accompanying papers.  相似文献   

17.
The sensitivity of specific neuronal pathways to Halothane and N2O has been investigated in flies. The effects were tested by monitoring the responses of photoreceptors and their second order neurons, as well as two behavioral responses-a leg reflex induced by light flashes and head movements induced by moving optical patterns-chosen because their neuronal substrates are fairly well known. Sensitivity to both agents rises with the length of dendrites and the number of input synapses of the neurons involved. The finding confirms the hypothesis, formulated in Part I of this paper, that neurons with long dendrites and/or axonal endings and large numbers of input synapses are the elements in the central nervous system with the highest sensitivity to anesthetic action. Under physiological conditions this kind of neuron is capable of gain-control: the relationship between input and output is modified according to functional requirements. Possible molecular mechanisms leading to functional impairment under anesthesia are discussed.  相似文献   

18.
Sensory information is acquired in spatial coordinate systems linked to sense organs, yet movement must be executed in coordinate systems linked to motor effector organs. Neurophysiological experiments are yielding new insights into how the brain transforms coordinate systems to facilitate movement.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号