首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
独立分量分析(IndependentComponentAnalysis,ICA)是一种基于信号统计特性的盲源分离方法,由于其分离的信号之间是互相独立的,所以在生物电信号去除干扰和伪迹、信号分离以及特征提取等方面有很大的潜在价值。本文提出了一种改进的快速ICA方法,提高了收敛速度。通过仿真,证明这种方法的优越性。最后利用该方法去除脑电中眼动伪迹,达到了较好的效果。  相似文献   

2.
Principal Component Analysis (PCA) is a classical technique in statistical data analysis, feature extraction and data reduction, aiming at explaining observed signals as a linear combination of orthogonal principal components. Independent Component Analysis (ICA) is a technique of array processing and data analysis, aiming at recovering unobserved signals or 'sources' from observed mixtures, exploiting only the assumption of mutual independence between the signals. The separation of the sources by ICA has great potential in applications such as the separation of sound signals (like voices mixed in simultaneous multiple records, for example), in telecommunication or in the treatment of medical signals. However, ICA is not yet often used by statisticians. In this paper, we shall present ICA in a statistical framework and compare this method with PCA for electroencephalograms (EEG) analysis.We shall see that ICA provides a more useful data representation than PCA, for instance, for the representation of a particular characteristic of the EEG named event-related potential (ERP).  相似文献   

3.
4.
Independent Component Analysis (ICA) was used for 19-channel resting EEG analysis 111 patients at early stages of depressive disorder and 526 age-matched healthy subjects. Comparison of independent components power spectra in depressed patients and healthy subjects in two states: Eyes closed and Eyes open, has revealed significant differences between groups for three frequency bands: Theta (4-7.5 Hz), Alpha (7.5-14 Hz), and Beta (14-20 Hz). Increased power of alpha and theta activity in depressed patients at parietal and occipital sites may be caused by decreased cortical activation of these regions. Diffuse enhancement of beta activity level can correlate with anxiety symptoms which take an important place in clinical picture of depressive disorder at early stages. Using of ICA method for comparison of spectral characteristics of EEG in groups of patients with different brain pathology and healthy subjects gives a possibility to localize more precisely the discovered differences as compare to traditional analysis of EEG spectra.  相似文献   

5.
I present an architecture for acoustic pattern classification using trinary-trinary template correlation. In spite of its computational simplicity, the algorithm and architecture represent a method which greatly reduces bandwidth of the input, storage requirements of the classifier memory, and power consumption of the system without compromising classification accuracy. The linear system should be amenable to training using recently-developed methods such as Independent Component Analysis (ICA), and we predict that behavior will be qualitatively similar to that of structures in the auditory cortex.  相似文献   

6.
A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients’ benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the individual subjects, therefore, it can be used as a significant tool in clinical practice.  相似文献   

7.
本文采用独立分量(ICA)分析对不同思维作业的脑电(EEG)信号进行预处理,再用自回归(AR)参数模型提取EEG信号特征,最后利用BP网络完成对特征样本集的训练和分类。实验结果表明,所采用的方法提高了脑电思维模式作业的准确度,对两种到五种不同思维作业未经训练的数据的平均分类准确度达到79%以上,超过现有文献报道的结果。  相似文献   

8.
9.
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance.  相似文献   

10.
11.
The developmental significance of the frequently encountered white matter signal abnormality (WMSA) findings on MRI around term-equivalent age (TEA) in very preterm infants, remains in question. The use of conventional qualitative analysis methods is subjective, lacks sufficient reliability for producing accurate and reproducible WMSA diagnosis, and possibly contributes to suboptimal neurodevelopmental outcome prediction. The advantages of quantitative over qualitative diagnostic approaches have been widely acknowledged and demonstrated. The purpose of this study is to objectively and accurately quantify WMSA on TEA T2-weighted MRI in very preterm infants and to assess whether such quantifications predict 2-year language and cognitive developmental outcomes. To this end, we constructed a probabilistic brain atlas, exclusively for very preterm infants to embed tissue distributions (i.e. to encode shapes, locations and geometrical proportion of anatomical structures). Guided with this atlas, we then developed a fully automated method for WMSA detection and quantification using T2-weighted images. Computer simulations and experiments using in vivo very preterm data showed very high detection accuracy. WMSA volume, particularly in the centrum semiovale, on TEA MRI was a significant predictor of standardized language and cognitive scores at 2 years of age. Independent validation of our automated WMSA detection algorithm and school age follow-up are important next steps.  相似文献   

12.
At present, resting state functional MRI (rsfMRI) is increasingly used in human neuropathological research. The present study aims at implementing rsfMRI in mice, a species that holds the widest variety of neurological disease models. Moreover, by acquiring rsfMRI data with a comparable protocol for anesthesia, scanning and analysis, in both rats and mice we were able to compare findings obtained in both species. The outcome of rsfMRI is different for rats and mice and depends strongly on the applied number of components in the Independent Component Analysis (ICA). The most important difference was the appearance of unilateral cortical components for the mouse resting state data compared to bilateral rat cortical networks. Furthermore, a higher number of components was needed for the ICA analysis to separate different cortical regions in mice as compared to rats.  相似文献   

13.
Stochastic ICA contrast maximisation using OJA's nonlinear PCA algorithm   总被引:1,自引:0,他引:1  
Independent Component Analysis (ICA) is an important extension of linear Principal Component Analysis (PCA). PCA performs a data transformation to provide independence to second order, that is, decorrelation. ICA transforms data to provide approximate independence up to and beyond second order yielding transformed data with fully factorable probability densities. The linear ICA transformation has been applied to the classical statistical signal-processing problem of Blind Separation of Sources (BSS), that is, separating unknown original source signals from a mixture whose mode of mixing is undetermined. In this paper it is shown that Oja's Nonlinear PCA algorithm performs a general stochastic online adaptive ICA. This analysis is corroborated with three simulations. The first separates unknown mixtures of original natural images, which have sub-Gaussian densities, the second separates linear mixtures of natural speech whose densities are super-Gaussian. Finally unknown mixtures of original images, which have both sub- and super-Gaussian densities are separated.  相似文献   

14.
Electrocardiogram (ECG) is the P-QRS-T wave, representing the cardiac function. The information concealed in the ECG signal is useful in detecting the disease afflicting the heart. It is very difficult to identify the subtle changes in the ECG in time and frequency domains. The Discrete Wavelet Transform (DWT) can provide good time and frequency resolutions and is able to decipher the hidden complexities in the ECG. In this study, five types of beat classes of arrhythmia as recommended by Association for Advancement of Medical Instrumentation (AAMI) were analyzed namely: non-ectopic beats, supra-ventricular ectopic beats, ventricular ectopic beats, fusion betas and unclassifiable and paced beats. Three dimensionality reduction algorithms; Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Independent Component Analysis (ICA) were independently applied on DWT sub bands for dimensionality reduction. These dimensionality reduced features were fed to the Support Vector Machine (SVM), neural network (NN) and probabilistic neural network (PNN) classifiers for automated diagnosis. ICA features in combination with PNN with spread value (σ) of 0.03 performed better than the PCA and LDA. It has yielded an average sensitivity, specificity, positive predictive value (PPV) and accuracy of 99.97%, 99.83%, 99.21% and 99.28% respectively using ten-fold cross validation scheme.  相似文献   

15.
Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI.  相似文献   

16.
The hippocampus is an important structural biomarker for Alzheimer's disease (AD) and has a primary role in the pathogenesis of other neurological and psychiatric diseases. This study presents a fully automated pattern recognition system for an accurate and reproducible segmentation of the hippocampus in structural Magnetic Resonance Imaging (MRI). The method was validated on a mixed cohort of 56 T1-weighted structural brain images, and consists of three processing levels: (a) Linear registration: all brain images were registered to a standard template and an automated method was applied to capture the global shape of the hippocampus. (b) Feature extraction: all voxels included in the previously selected volume were characterized by 315 features computed from local information. (c) Voxel classification: a Random Forest algorithm was used to classify voxels as belonging or not belonging to the hippocampus. In order to improve the classification performance, an adaptive learning method based on the use of the Pearson's correlation coefficient was developed. The segmentation results (Dice similarity index = 0.81 ± 0.03) compare well with other state-of-the art approaches. A validation study was conducted on an independent dataset of 100 T1-weighted brain images, achieving significantly better results than those obtained with FreeSurfer.  相似文献   

17.
《IRBM》2022,43(4):290-299
ObjectiveIn this research paper, the brain MRI images are going to classify by considering the excellence of CNN on a public dataset to classify Benign and Malignant tumors.Materials and MethodsDeep learning (DL) methods due to good performance in the last few years have become more popular for Image classification. Convolution Neural Network (CNN), with several methods, can extract features without using handcrafted models, and eventually, show better accuracy of classification. The proposed hybrid model combined CNN and support vector machine (SVM) in terms of classification and with threshold-based segmentation in terms of detection.ResultThe findings of previous studies are based on different models with their accuracy as Rough Extreme Learning Machine (RELM)-94.233%, Deep CNN (DCNN)-95%, Deep Neural Network (DNN) and Discrete Wavelet Autoencoder (DWA)-96%, k-nearest neighbors (kNN)-96.6%, CNN-97.5%. The overall accuracy of the hybrid CNN-SVM is obtained as 98.4959%.ConclusionIn today's world, brain cancer is one of the most dangerous diseases with the highest death rate, detection and classification of brain tumors due to abnormal growth of cells, shapes, orientation, and the location is a challengeable task in medical imaging. Magnetic resonance imaging (MRI) is a typical method of medical imaging for brain tumor analysis. Conventional machine learning (ML) techniques categorize brain cancer based on some handicraft property with the radiologist specialist choice. That can lead to failure in the execution and also decrease the effectiveness of an Algorithm. With a brief look came to know that the proposed hybrid model provides more effective and improvement techniques for classification.  相似文献   

18.
MOTIVATION: We implement a data mining technique based on the method of Independent Component Analysis (ICA) to generate reliable independent data sets for different HIV therapies. We show that this technique takes advantage of the ICA power to eliminate the noise generated by artificial interaction of HIV system dynamics. Moreover, the incorporation of the actual laboratory data sets into the analysis phase offers a powerful advantage when compared with other mathematical procedures that consider the general behavior of HIV dynamics. RESULTS: The ICA algorithm has been used to generate different patterns of the HIV dynamics under different therapy conditions. The Kohonen Map has been used to eliminate redundant noise in each pattern to produce a reliable data set for the simulation phase. We show that under potent antiretroviral drugs, the value of the CD4+ cells in infected persons decreases gradually by about 11% every 100 days and the levels of the CD8+ cells increase gradually by about 2% every 100 days. AVAILABILITY: Executable code and data libraries are available by contacting the corresponding author. IMPLEMENTATION: Mathematica 4 has been used to simulate the suggested model. A Pentium III or higher platform is recommended.  相似文献   

19.

Background

Obsessive-compulsive disorder (OCD) is a mental illness characterized by the loss of control. Because the cingulate cortex is believed to be important in executive functions, such as inhibition, we used functional magnetic resonance imaging (fMRI) techniques to examine whether and how activity and functional connectivity (FC) of the cingulate cortex were altered in drug-naïve OCD patients.

Methods

Twenty-three medication-naïve OCD patients and 23 well-matched healthy controls received fMRI scans in a resting state. Functional connectivities of the anterior cingulate (ACC) and the posterior cingulate (PCC) to the whole brain were analyzed using correlation analyses based on regions of interest (ROI) identified by the fractional amplitude of low-frequency fluctuation (fALFF). Independent Component Analysis (ICA) was used to identify the resting-state sub-networks.

Results

fALFF analysis found that regional activity was increased in the ACC and decreased in the PCC in OCD patients when compared to controls. FC of the ACC and the PCC also showed different patterns. The ACC and the PCC were found to belong to different resting-state sub-networks in ICA analysis and showed abnormal FC, as well as contrasting correlations with the severity of OCD symptoms.

Conclusions

Activity of the ACC and the PCC were increased and decreased, respectively, in the medication-naïve OCD patients compared to controls. Different patterns in FC were also found between the ACC and the PCC with respect to these two groups. These findings implied that the cardinal feature of OCD, the loss of control, may be attributed to abnormal activities and FC of the ACC and the PCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号