共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Daniele Moretti Barbara Del Bello Giulia Allavena Alessandro Corti Cinzia Signorini Emilia Maellaro 《PloS one》2015,10(2)
Calpain-3 is an intracellular cysteine protease, belonging to Calpain superfamily and predominantly expressed in skeletal muscle. In human melanoma cell lines and biopsies, we previously identified two novel splicing variants (hMp78 and hMp84) of Calpain-3 gene (CAPN3), which have a significant lower expression in vertical growth phase melanomas and, even lower, in metastases, compared to benign nevi. In the present study, in order to investigate the pathophysiological role played by the longer Calpain-3 variant, hMp84, in melanoma cells, we over-expressed it in A375 and HT-144 cells. In A375 cells, the enforced expression of hMp84 induces p53 stabilization, and modulates the expression of a few p53- and oxidative stress-related genes. Consistently, hMp84 increases the intracellular production of ROS (Reactive Oxygen Species), which lead to oxidative modification of phospholipids (formation of F2-isoprostanes) and DNA damage. Such events culminate in an adverse cell fate, as indicated by the decrease of cell proliferation and by cell death. To a different extent, either the antioxidant N-acetyl-cysteine or the p53 inhibitor, Pifithrin-α, recover cell viability and decrease ROS formation. Similarly to A375 cells, hMp84 over-expression causes inhibition of cell proliferation, cell death, and increase of both ROS levels and F2-isoprostanes also in HT-144 cells. However, in these cells no p53 accumulation occurs. In both cell lines, no significant change of cell proliferation and cell damage is observed in cells over-expressing the mutant hMp84C42S devoid of its enzymatic activity, suggesting that the catalytic activity of hMp84 is required for its detrimental effects. Since a more aggressive phenotype is expected to benefit from down-regulation of mechanisms impairing cell growth and survival, we envisage that Calpain-3 down-regulation can be regarded as a novel mechanism contributing to melanoma progression. 相似文献
3.
Requirement for cGMP in Nerve Cell Death Caused by Glutathione Depletion 总被引:13,自引:0,他引:13 下载免费PDF全文
Glutathione depletion occurs in several forms of apoptosis and is associated with Parkinson's disease and HIV toxicity. The neurotransmitter glutamate kills immature cortical neurons and a hippocampal nerve cell line via an oxidative pathway associated with glutathione depletion. It is shown here that soluble guanylyl cyclase (sGC) activity is required for nerve cell death caused by glutathione depletion. Inhibitors of sGC block glutamate toxicity and a cGMP analogue potentiates cell death. Glutamate also induces an elevation of cGMP that occurs late in the cell death pathway. The resultant cGMP modulates the increase in intracellular calcium that precedes cell death because sGC inhibitors prevent calcium elevation and the cGMP analogue potentiates the increase in intracellular calcium. These results suggest that the final pathway of glutamate induced nerve cell death is through a cGMP-modulated calcium channel. 相似文献
4.
Cholesteatoma Fibroblasts Promote Epithelial Cell Proliferation through Overexpression of Epiregulin
Mamoru Yoshikawa Hiromi Kojima Yuichiro Yaguchi Naoko Okada Hirohisa Saito Hiroshi Moriyama 《PloS one》2013,8(6)
To investigate whether keratinocytes proliferate in response to epiregulin produced by subepithelial fibroblasts derived from middle ear cholesteatoma. Tissue samples were obtained from patients undergoing tympanoplasty. The quantitative polymerase chain reaction and immunohistochemistry were performed to examine epiregulin expression and localization in cholesteatoma tissues and retroauricular skin tissues. Fibroblasts were cultured from cholesteatoma tissues and from normal retroauricular skin. These fibroblasts were used as feeder cells for culture with a human keratinocyte cell line (PHK16-0b). To investigate the role of epiregulin in colony formation by PHK16-0b cells, epiregulin mRNA expression was knocked down in fibroblasts by using short interfering RNA and epiregulin protein was blocked with a neutralizing antibody. Epiregulin mRNA expression was significantly elevated in cholesteatoma tissues compared with that in normal retroauricular skin. Staining for epiregulin was more intense in the epithelial cells and subepithelial fibroblasts of cholesteatoma tissues than in retroauricular skin. When PHK16-0b cells were cultured with cholesteatoma fibroblasts, their colony-forming efficiency was 50% higher than when these cells were cultured with normal skin fibroblasts. Also, knockdown of epiregulin mRNA in cholesteatoma fibroblasts led to greater suppression of colony formation than knockdown in skin fibroblasts. Furthermore, the colony-forming efficiency of PHK16-0b cells was significantly reduced after treatment with an epiregulin neutralizing antibody in co-culture with cholesteatoma fibroblasts, but not in co-culture with skin fibroblasts. These results suggest that keratinocyte hyperproliferation in cholesteatoma is promoted through overexpression of epiregulin by subepithelial fibroblasts via epithelial–mesenchymal interactions, which may play a crucial role in the pathogenesis of middle ear cholesteatoma. 相似文献
5.
Marion Curtis Hilary A. Kenny Bradley Ashcroft Abir Mukherjee Alyssa Johnson Yilin Zhang Ynes Helou Raquel Batlle Xiaojing Liu Nuria Gutierrez Xia Gao S. Diane Yamada Ricardo Lastra Anthony Montag Nagib Ahsan Jason W. Locasale Arthur R. Salomon Angel R. Nebreda Ernst Lengyel 《Cell metabolism》2019,29(1):141-155.e9
6.
Histone Deacetylase Inhibition Impairs Normal Intestinal Cell Proliferation and Promotes Specific Gene Expression 下载免费PDF全文
Alireza Roostaee Amel Guezguez Marco Beauséjour Aline Simoneau Pierre H. Vachon Emile Levy Jean‐François Beaulieu 《Journal of cellular biochemistry》2015,116(11):2695-2708
Mechanisms that maintain proliferation and delay cell differentiation in the intestinal crypt are not yet fully understood. We have previously shown the implication of histone methylation in the regulation of enterocytic differentiation. In this study, we investigated the role of histone deacetylation as an important epigenetic mechanism that controls proliferation and differentiation of intestinal cells using the histone deacetylase inhibitor suberanilohydroxamic acid (SAHA) on the proliferation and differentiation of human and mouse intestinal cells. Treatment of newly confluent Caco‐2/15 cells with SAHA resulted in growth arrest, increased histone acetylation and up‐regulation of the expression of intestine‐specific genes such as those encoding sucrase‐isomaltase, villin and the ion exchanger SLC26A3. Although SAHA has been recently used in clinical trials for cancer treatment, its effect on normal intestinal cells has not been documented. Analyses of small and large intestines of mice treated with SAHA revealed a repression of crypt cell proliferation and a higher expression of sucrase‐isomaltase in both segments compared to control mice. Expression of SLC26A3 was also significantly up‐regulated in the colons of mice after SAHA administration. Finally, SAHA was also found to strongly inhibit normal human intestinal crypt cell proliferation in vitro. These results demonstrate the important implication of epigenetic mechanisms such as histone acetylation/deacetylation in the regulation of normal intestinal cell fate and proliferation. J. Cell. Biochem. 116: 2695–2708, 2015. © 2015 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc. 相似文献
7.
Clifford S. Collis Min Yang Susan J. Peach Anthony T. Diplock Catherine Rice-evans 《Free radical research》1996,25(1):87-93
Exposure of 3T3 fibroblasts to Fe reveals a concentration-dependent inhibition of cell proliferation compared to control cells, the apparent threshold for this iron-mediated effect being 5 μM FeII. The inhibition of cell proliferation was accompanied by an enhancement of total malondialdehyde (MDA) levels (as detected directly by hplc) in the cells at higher iron concentrations. The co-supplementation of Fe with varying concentrations of ascorbic acid over the range 5 μM to 240 μM had no significant effect on the threshold for iron toxicity or lipid peroxidation. These results show that there is neither a significant exacerbation of the pro-oxidant effect of FeII nor any protective effect of ascorbate when cultures of 3T3 mouse fibroblasts are exposed to co-supplementation regimes of iron with ascorbic acid. 相似文献
8.
Galectin-3, a β-galactoside-binding protein, has been shown to be involved in multiple biological processes through interaction with its complementary glycoconjugates. Here we provide the first evidence of galectin-3 as a mitogen. Incubation of quiescent cultures of normal human lung fibroblast IMR-90 cells with recombinant galectin-3 (rgalectin-3) stimulated DNA synthesis as well as cell proliferation in a dose-dependent manner. This mitogenic activity was dependent on the lectin property of galectin-3, as it could be significantly inhibited by lactose, a disaccharide competitive for carbohydrate-binding by galectin-3. Chemical cross-linking and affinity-purification experiments identified binding of rgalectin-3 to cell surface glycoproteins, which were not recognized by antibodies directed against lysosome-associated membrane proteins (LAMPs), putative cellular ligands for galectin-3. Moreover, pulse–chase analysis revealed no secretion of galectin-3 by IMR-90 cells. These results indicate that galectin-3 is a mitogen capable of stimulating fibroblast cell proliferation in a paracrine fashion through interaction with cell surface glycoconjugates different from LAMPs and suggest a possible involvement of galectin-3 in tissue remodeling. 相似文献
9.
将大肠杆菌中高效表达的萝卜磷脂氢谷胱甘肽过氧化物酶(RsPHGPx)及其底物还原型谷胱甘肽(GSH)联合作用于H2O2、过氧化叔丁基(t-BHP)以及磷脂氢过氧化物(PLPCOOH)损伤的小鼠NIH3T3成纤维细胞,研究其对于细胞过氧化损伤的保护作用。发现单独加入10 μg/ml RsPHGPx并不能明显保护细胞应对过氧化损伤,但是10 μg/ml RsPHGPx与3 mg/ml GSH共同作用,可显著提高GSH对细胞过氧化损伤的保护效果,提高细胞存活率,降低细胞膜脂质过氧化水平和胞内活性氧(ROS)水平,保护细胞维持形态完整和抑制细胞凋亡。这一联合作用结果说明RsPHGPx的催化作用可以快速清除细胞内多种过氧化物,高效地保护细胞免受过氧化损伤,为RsPHGPx的应用提供了实验依据。 相似文献
10.
The DNA: proteins ratio in nuclei of root meristems of pea (Pisumsativum L. cv. Lincoln) changed considerably during germinationas cells moved from a quiescent to an actively proliferatingstate with a higher protein content in nuclei of the latter.Electrophoretic patterns of nuclear proteins extracted at differenttimes of germination were used to examine qualitative changes.The various patterns presented a substantial similarity butthere were some proteins whose content increased or decreasedand others which disappeared or appeared during germination.The bulk of these variations occurred between 24 and 48 h ofgermination, suggesting that they might be correlated to thetransition from quiescence to the proliferating state. The patternof nuclear proteins obtained from adult differentiated roottissue was also examined. We tried to purify five differentnuclear protein components from intact nuclei by a multi-stepextraction procedure using a series of different buffers toascertain the nature of proteins presenting major interestingvariations. Most of these proteins purified with the nuclearsap or ribosomal components. Key words: Cell proliferation, electrophoresis, Pisum sativum L, root meristems 相似文献
11.
Marco Antonio Escárcega-Tame Ivette Martínez-Vieyra Lea Alonso-Rangel Bulmaro Cisneros Steve J. Winder Doris Cerecedo 《PloS one》2015,10(12)
Background
Dystroglycan has recently been characterised in blood tissue cells, as part of the dystrophin glycoprotein complex involved in the differentiation process of neutrophils.Purpose
In the present study we have investigated the role of dystroglycan in the human promyelocytic leukemic cell line Kasumi-1 differentiated to macrophage-like cells.Methods
We characterised the pattern expression and subcellular distribution of dystroglycans in non-differentiated and differentiated Kasumi-1 cells.Results
Our results demonstrated by WB and flow cytometer assays that during the differentiation process to macrophages, dystroglycans were down-regulated; these results were confirmed with qRT-PCR assays. Additionally, depletion of dystroglycan by RNAi resulted in altered morphology and reduced properties of differentiated Kasumi-1 cells, including morphology, migration and phagocytic activities although secretion of IL-1β and expression of markers of differentiation are not altered.Conclusion
Our findings strongly implicate dystroglycan as a key membrane adhesion protein involved in actin-based structures during the differentiation process in Kasumi-1 cells. 相似文献12.
Suxia Li Bin Li Haoran Jiang Yao Wang Mingli Qu Haoyun Duan Qingjun Zhou Weiyun Shi 《PloS one》2013,8(4)
Purpose
Macrophages have been shown to play a critical role in the wound healing process. In the present study, the role of macrophages in wound healing after autologous corneal transplantation was investigated by depleting local infiltrated macrophages.Methods
Autologous corneal transplantation model was used to induce wound repair in Balb/c mice. Macrophages were depleted by sub-conjunctival injections of clodronate-containing liposomes (Cl2MDP-LIP). The presence of CD11b+ F4/80+ macrophages, α-smooth muscle actin+ (α-SMA+) myofibroblasts, CD31+ vascular endothelial cells and NG2 + pericytes was examined by immunohistochemical and corneal whole-mount staining 14 days after penetrating keratoplasty. Peritoneal macrophages were isolated from Balb/c mice and transfused into conjunctiva to examine the recovery role of macrophages depletion on wound healing after autologous corneal transplantation.Results
Sub-conjunctival Cl2MDP-LIP injection significantly depleted the corneal resident phagocytes and infiltrated macrophages into corneal stroma. Compared with the mice injected with PBS-liposome, the Cl2MDP-LIP-injected mice showed few inflammatory cells, irregularly distributed extracellular matrix, ingrowth of corneal epithelium into stroma, and even the detachment of donor cornea from recipient. Moreover, the number of macrophages, myofibroblasts, endothelial cells and pericytes was also decreased in the junction area between the donor and recipient cornea in macrophage-depleted mice. Peritoneal macrophages transfusion recovered the defect of corneal wound healing caused by macrophages depletion.Conclusions
Macrophage depletion significantly impairs wound healing after autologous corneal transplantation through at least partially impacting on angiogenesis and wound closure. 相似文献13.
ERK3是ERK家族中结构较为独特的成员,尤其在分子生物学特征上与ERK家族其他成员明显不同,如基因结构中外显子之间的大内含子、蛋白质结构中活化环的丝氨酸单磷酸化位点以及激酶C端的延伸序列等.ERK3具有独特的丝氨酸单磷酸化位点,导致所有以苏氨酸/酪氨酸双磷酸化位点为磷酸化靶点的MEK分子均不能活化ERK3.ERK3的C端延伸序列能与细胞周期蛋白D3结合并调控ERK3的亚细胞定位,从而影响ERK3对细胞周期的调节.据目前文献推测,ERK3调控细胞周期的信号通路可能为:Ras→B-Raf→ERK3激酶→ERK3→G1期CDK复合物减少→S期抑制因子增多→细胞增殖阻滞于S期→细胞停止增殖,进入分化.此外,ERK3信号通路的活化与细胞分化、胚胎发育、胰岛素分泌以及肿瘤的发生密切相关. 相似文献
14.
The purification of immune cell populations is often required in order to study their unique functions. In particular, molecular approaches such as real-time PCR and microarray analysis require the isolation of cell populations with high purity. Commonly used purification strategies include fluorescent activated cell sorting (FACS), magnetic bead separation and complement depletion. Of the three strategies, complement depletion offers the advantages of being fast, inexpensive, gentle on the cells and a high cell yield. The complement system is composed of a large number of plasma proteins that when activated initiate a proteolytic cascade culminating in the formation of a membrane-attack complex that forms a pore on a cell surface resulting in cell death1. The classical pathway is activated by IgM and IgG antibodies and was first described as a mechanism for killing bacteria. With the generation of monoclonal antibodies (mAb), the complement cascade can be used to lyse any cell population in an antigen-specific manner. Depletion of cells by the complement cascade is achieved by the addition of complement fixing antigen-specific antibodies and rabbit complement to the starting cell population. The cells are incubated for one hour at 37°C and the lysed cells are subsequently removed by two rounds of washing. MAb with a high efficiency for complement fixation typically deplete 95-100% of the targeted cell population. Depending on the purification strategy for the targeted cell population, complement depletion can be used for cell purification or for the enrichment of cell populations that then can be further purified by a subsequent method.Open in a separate windowClick here to view.(36M, flv) 相似文献
15.
Adam Slivka Mary Beth Spina Harold I. Calvin Gerald Cohen 《Journal of neurochemistry》1988,50(5):1391-1393
Previous studies indicated that DL-buthionine sulfoximine (DL-BSO), an agent that inhibits the biosynthesis of GSH in liver and other peripheral organs, fails to suppress levels of GSH in the CNS. In the current study, preweanling mice responded to repeated injections of L-BSO with marked declines (79.6-86.5%) of GSH content in brain and spinal cord. In adult mice, the same treatment schedule produced only modest declines (17.8-29.2%) of GSH content in brain and a 55.9% decline in spinal cord. Pretreatment of preweanling mice with L-BSO represents a tool for studying the role of GSH in the CNS. 相似文献
16.
Omega-3 fatty acids are crucial for proper development and function of the brain where docosahexaenoic acid (DHA), the primary omega-3 fatty acid in the brain, is retained avidly by the neuronal membranes. We investigated the effect of DHA depletion in the brain on the outcome of traumatic brain injury (TBI). Pregnant mice were put on an omega-3 fatty acid adequate or deficient diet from gestation day 14 and the pups were raised on the respective diets. Continuation of this dietary regime for three generations resulted in approximately 70% loss of DHA in the brain. Controlled cortical impact was delivered to both groups of mice to produce severe TBI and the functional recovery was compared. Compared to the omega-3 adequate mice, the DHA depleted mice exhibited significantly slower recovery from motor deficits evaluated by the rotarod and the beam walk tests. Furthermore, the DHA deficient mice showed greater anxiety-like behavior tested in the open field test as well as cognitive deficits evaluated by the novel object recognition test. The level of alpha spectrin II breakdown products, the markers of TBI, was significantly elevated in the deficient mouse cortices, indicating that the injury is greater in the deficient brains. This observation was further supported by the reduction of NeuN positive cells around the site of injury in the deficient mice, indicating exacerbated neuronal death after injury. These results suggest an important influence of the brain DHA status on TBI outcome. 相似文献
17.
目的构建pcDNA3.1-STK15表达质粒,探讨STK15基因对小鼠成纤维细胞(NIH3T3)的影响。方法构建pcDNA3.1-STK15质粒,将其转染NIH3T3,应用RT-PCR、免疫细胞化学和Western印迹方法检测STK15的表达;MTT法检测细胞增殖能力;Transwell检测细胞侵袭能力。结果转染pcDNA3.1-STK15质粒的NIH3T3细胞在48 h有STK15的表达,而且该细胞的增殖速度和穿透Matrigel胶的细胞数均明显高于对照组(P〈0.05)。结论STK15基因具有增加细胞增殖和细胞侵袭力的功能,进而形成肿瘤。 相似文献
19.
20.
供体细胞所处的细胞周期及细胞周期同期化的方法对于体细胞核移植(somatic cell nuclear transfer,SCNT)的成功非常重要,本研究对血清饥饿培养处理与培养至完全汇合后的猪成纤维细胞周期同期化水平进行了检测。利用不同方法对猪成纤维细胞同期化处理后,通过流式细胞仪对细胞的细胞周期分布比率进行了检测。将细胞进行血清饥饿2472h,显著地增加了G0/G1期的细胞百分率(92.2%93.7%vs.77.8%,P<0.05)。将细胞培养至完全汇合后再培养2448h,G0/G1期的细胞比例类似于血清饥饿法(94.4%,89.6%)。血清饥饿24h后,置换为10%FBS能逆转至生长期。用这两种不同方法处理后的体细胞作为核移植的供体构建重构胚,分裂率与囊胚率差异不显著(P>0.05)。结果表明,猪成纤维细胞通过血清饥饿法或者培养至汇合完全均能有效地将细胞周期同期化至G0/G1期,且均可作为体细胞核移植的供体细胞。 相似文献