首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The unresolved ecophysiological significance of Dark Septate Endophytes (DSE) may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.—Acephala applanata species complex (PAC). We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch) with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM) and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs) with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE colonization without specific structures necessary for mycorrhizal nutrient transport. A. macrosclerotiorum forms ectomycorrhiza with conifers but not with broadleaves and probably does not form common mycorrhizal networks between conifers with Ericaceae.  相似文献   

2.
A diverse range of fungi associate with ectomycorrhizal (EcM) root tips, however, their identity and the biotic and abiotic filters structuring these communities remain unknown. We employed a metabarcoding approach to characterize fungal communities associating with the EcM root tips of Quercus rubra along a natural soil nitrogen gradient. EcM communities and ectomycorrhizal associated fungi (EcAF) were tightly linked across the breadth of the soil gradient. Notably, EcAF communities were primarily shaped by the morphological attributes of EcM communities, particularly the relative abundance of EcM taxa forming rhizomorphic hyphae. Edaphic properties (soil C:N and net N mineralization) exerted minimal influence, suggesting a strong role of biotic interactions in EcAF community assembly. The presence of plants forming ericoid mycorrhizal associations also shapes the prevalence of ericoid mycorrhizal fungi associating with EcM root tips. Overall, EcAF communities were dominated by helotialean fungi, ericoid mycorrhizal fungi, dark septate endophytes, and the white-rot fungi Mycena.  相似文献   

3.
Johansson  Marianne 《Plant and Soil》2001,231(2):225-232
Fungi were isolated from young, serial-washed roots of Calluna sampled from a Danish heathland, Hjelm Hede. Of the 626 isolates, those that were dark, sterile and septate were divided into 13 morphological groups based on their appearance in culture on malt agar. Mycorrhizal synthesis in vitro showed that several groups formed typical ericoid mycorrhiza with seedlings of Calluna; these ericoid mycorrhizal fungi were morphologically similar to Hymenoscyphus ericae. The identities of the other dark, septate fungi are uncertain. Oidiodendron spp. were isolated in a very low frequency; these fungi also formed typical ericoid mycorrhiza. The Calluna root system on Hjelm Hede demonstrated a high morphological diversity among the associated dark, septate fungi suggesting that more than one fungus could coexist in the same host root system.  相似文献   

4.
Soil stockpiling is a common practice prior to the reclamation of surface mines. In this study, velvetleaf blueberry and Labrador tea plants were grown from seed in fresh soil, stockpiled soil (1 year), and autoclaved stockpiled soil (1 year) obtained from the Canadian boreal forest. After 7 months of growth, the root colonization intensity with ericoid mycorrhizal (ERM) fungi in both plants growing in stockpiled soil was lower compared to plants growing in the fresh soil. The diversity of ERM fungal species in roots also decreased due to soil stockpiling and Pezoloma ericae was absent from the plants growing in stockpiled soil. Changes in the ERM root colonization in plants growing in stockpiled soil were accompanied by decreases in root and shoot dry weights. Leaf chlorophyll, nitrogen, and phosphorus concentrations of velvetleaf blueberry were higher in fresh soil compared to 1‐year stockpiled soil. Plants grown in the autoclaved stockpiled soil became colonized by the thermotolerant ERM fungus Leohumicola verrucosa and showed higher root and shoot biomass compared to the nonautoclaved stockpiled soil. The results point to the importance of ERM fungi for growth of ericaceous plants, even under favorable environmental conditions and adequate fertilization, and suggest that reduced ERM colonization intensity and ERM fungal diversity in roots likely contributed to the negative effects of soil stockpiling on growth of velvetleaf blueberry and Labrador tea.  相似文献   

5.
蓝莓Vaccinium uliginosum是欧石南菌根(ericoid mycorrhiza,ERM)真菌典型的寄主植物,但同时也可与丛枝菌根(arbuscular mycorrhiza,AM)真菌和深色有隔内生真菌(dark septate endophytes,DSE)共生形成复合共生体。本研究旨在调查和评价不同栽培体制下蓝莓成年树花果期根系共生体发育状况及其根区土壤中AM真菌资源分布状况,以期为优质蓝莓栽培管理提供理论依据和技术基础。从青岛佳沃蓝莓基地采集暖棚、冷棚和露地3种方式栽培的9-10年生‘蓝丰’、‘奥尼尔’和‘公爵’蓝莓的根系及根区土样,观察测定根系共生体着生数量、根区土壤中AM真菌孢子数量和菌种组成。结果表明,所有栽培方式下供试品种蓝莓根系均形成ERM、AM和DSE结构及其复合共生体;其中,AM着生数量最多,其次是ERM,DSE侵染率最低;复合共生体中则呈现ERM+AM>ERM+DSE>ERM+AM+DSE;蓝莓复合共生体着生数量、AM真菌侵染率、丛枝着生率及孢子数量等不同种植方式下呈现暖棚>冷棚>露地,不同品种呈现‘蓝丰’>‘公爵’>‘奥尼尔’,而ERM和DSE侵染率也呈现上述变化趋势。依据AM真菌形态特征,供分离鉴定获得5属11种AM真菌,以暖棚栽培条件下分离获得的AM真菌数量最多,‘蓝丰’根区土壤中分布的AM真菌属种最多。暖棚内成年树花果期蓝莓根系共生体发育健全,AM真菌种类和孢子数量较多,可能有利于提高蓝莓的产量、改善果实品质和抗逆性。  相似文献   

6.
Wetlands provide numerous ecosystem services, and ericaceous plants are important components of these habitats. However, the ecology of fungi associated with ericaceous roots in these habitats is poorly known. To investigate fungi associated with ericaceous roots in wetlands, ericoid mycorrhizal colonization was quantified, and fungal communities were characterized on the roots of Gaultheria hispidula and Kalmia angustifolia along two upland – forested wetland transects in spring and fall. Ericoid mycorrhizal colonization was significantly higher in the wetlands for both plant species. Both upland and wetland habitats supported distinct assemblages of ericaceous root associated fungi including habitat specific members of the genus Serendipita. Habitat was a stronger driver of ericoid mycorrhizal colonization and ericaceous root associated community composition than host or sampling season, with differences related to soil water content, soil nutrient content, or both. Our results indicate that ericaceous plant roots in forested wetlands are heavily colonized by habitat specific symbionts.  相似文献   

7.
Mycorrhiza samples of neighbouring Quercus ilex and Erica arborea plants collected in a postcutting habitat were processed to see whether plants differing in mycorrhizal status harbour the same root endophytes. Three experiments were performed in parallel: (i) isolation, identification and molecular characterization of fungi from surface-sterilized roots of both plant species; (ii) re-inoculation of fungal isolates on axenic E. arborea and Q. ilex seedlings; (iii) direct inoculation of field-collected Q. ilex ectomycorrhizas onto E. arborea seedlings. About 70 and 150 fungal isolates were obtained from roots of Q. ilex and E. arborea, respectively. Among them, Oidiodendron species and five cultural morphotypes of sterile isolates formed typical ericoid mycorrhizas on E. arborea in vitro. Fungi with such mycorrhizal ability were derived from both host plants. Isolates belonging to one of these morphotypes (sd9) also exhibited an unusual pattern of colonization, with an additional extracellular hyphal net. Ericoid mycorrhizas were also readily obtained by direct inoculation of E. arborea seedlings with Q. ilex ectomycorrhizal tips. Polymerase chain-restriction fragment length polymorphism and random amplified polymorphic DNA analyses of the shared sterile morphotypes demonstrate, in the case of sd9, the occurrence of the same genet on the two host plants. These results indicate that ericoid mycorrhizal fungi associate with ectomycorrhizal roots, and the ecological significance of this finding is discussed.  相似文献   

8.
This paper describes a novel species of ericoid mycorrhizal fungus from Australia, Cairneyella variabilis, Midgley and Tran-Dinh, gen. nov. sp. nov. The genome of C. variabilis was sequenced and a draft genome assembled. The draft genome of C. variabilis is 52.4 Mbp in length, and to our knowledge, this is the first study to present a genome of an ericoid mycorrhizal fungus from the southern hemisphere. Using the SignalP and dbCAN bioinformatic pipelines, a study of the catabolic potential of C. variabilis was undertaken and showed genes for an array of degradative enzymes, most of which appear to be secreted from the hyphae, to access a suite of different carbon sources. Isolates of C. variabilis have been previously shown to utilise cellulose, carboxymethyl cellulose (CMC), cellobiose, xylan, pectin, starch and tannic acid for growth, and in the current study, putative enzymes for these processes were revealed. These enzymes likely play key roles in nutrient cycling and other edaphic processes in heathland environments. ITS phylogenetic analyses showed C. variabilis to be distinct from the fungi of the “Hymenoscyphus ericae aggregate”.  相似文献   

9.
Ericaceae associate with a wide spectrum of root mycobionts, but the most common are ascomycetous ericoid mycorrhizal fungi and dark septate endophytes (DSE), followed by basidiomycetous fungi and glomeracean arbuscular mycorrhizal fungi. We investigated distribution and morphological diversity of ericoid mycorrhizae (ErM), DSE associations, ectomycorrhizae (EcM) and arbuscular mycorrhizae (AM) in hair roots of six European native Rhododendron species and found that i) while EcM and AM were absent, ErM and DSE associations were simultaneously present in all screened plants; ii) their levels were negatively correlated, suggesting Ericaceae preference for certain root-fungus association in certain habitats; iii) the highest ErM colonization occurred at sites in southern and central Europe, while the highest DSE colonization was found in a subarctic site in northern Finland and in a subalpine site in the Carpathians, suggesting a latitudinal/altitudinal shift in Ericaceae root-fungus associations; iv) some mycelia could simultaneously form structures corresponding to ErM and DSE association, which occasionally resulted in a unique ectendomycorrhizal colonization comprising an intercellular parenchymatous net and intracellular hyphal coils. These results indicate frequent interactions between ErM fungi and DSE in roots of European rhododendrons and a morphological continuum between ErM and DSE associations. The new ectendomycorrhizal type deserves further investigation.  相似文献   

10.
Molecular diversity of fungi from ericoid mycorrhizal roots   总被引:6,自引:0,他引:6  
In order to investigate the diversity of fungal endophytes in ericoid mycorrhizal roots, about 150 mycelia were isolated from surface-sterilized roots of 10 plants of Calluna vulgaris. Each mycelium was reinoculated to C. vulgaris seedlings under axenic conditions, and the phenotype of the plant-fungus association assessed by light and electron microscopy. Many isolates that were able in vitro to produce typical ericoid mycorrhizae did not form reproductive structures under our culture conditions, whereas others could be identified as belonging to the species Oidiodendron maius. Morphological and molecular analysis of the fungal isolates showed that the root system of a single plant of C. vulgaris is a complex mosaic of several populations of mycorrhizal and non mycorrhizal fungi. PCR-RFLP techniques, used to investigate the mycorrhizal endophytes, revealed up to four groups of fungi with different PCR-RFLP patterns of the ITS ribosomal region from a single plant. Some of the mycorrhizal fungi sharing the same PCR-RFLP pattern showed high degree of genetic polymorphism when analysed with the more sensitive RAPD technique; this technique may prove a useful tool to trace the spread of individual mycorrhizal mycelia, as it has allowed us to identify isolates with identical RAPD fingerprints on different plants.  相似文献   

11.
《Fungal biology》2021,125(12):1026-1035
The diversity and functionality of ericoid mycorrhizal (ErM) fungi are still being understudied. Members of Chaetothyriomycetidae evolved a specific lifestyle of inhabiting extreme, poor, or toxic environments. Some taxa in this subclass, especially in Chaetothyriales, are also putative ErM taxa, but their mycorrhizal ability is mostly unknown because the members are generally hard to isolate from roots. This study herein focused on eight root isolates and provided their phylogeny and morphology of root colonization. Phylogenetic analysis based on rRNA sequences clarified that the isolated strains were not classified into Chaetothyriales, but in an unnamed lineage in Chaetothyriomycetidae. This lineage also contains rock isolates, bryosymbionts, and a resinicolous species as well as various environmental sequences obtained from soil/root samples. All strains grew extremely slow by mycelia on cornmeal or malt extract agar (2.9–8.5 mm/month) and formed hyphal coils in vital rhizodermal cells of sterile blueberry seedlings in vitro. This study illustrated the presence of a novel putative ErM lineage in Chaetothyriomycetidae.  相似文献   

12.
Three hundred and twenty-seven fungal endophyte isolates were obtained from hair roots of neighbouring Woollsia pungens Cav. (Muell.) and Leucopogon parviflorus (Andr.) Lindl. (both Ericaceae) plants at an Australian dry sclerophyll forest site and mapped according to the root segments from which they were obtained. Restriction fragment length polymorphism (RFLP) analysis of the rDNA internal transcribed spacer (ITS) region indicated that the isolate assemblage comprised 21 RFLP-types (= putative taxa), five of which were shown in gnotobiotic culture experiments to be ericoid mycorrhizal endophytes. While two mycorrhizal RFLP-types were exclusive to either W. pungens or L. parviflorus, RFLP-type VI was isolated from both hosts. This putative taxon had strong ITS sequence identity with Helotiales ericoid mycorrhizal ascomycetes, comprised ca. 75% of all isolates from each plant and was spatially widespread in both root systems. Inter-simple sequence repeat PCR analysis indicated that two and four genotypes of RFLP-type VI were present in the W. pungens and L. parviflorus root systems respectively, however single genotypes appeared to dominate each root system. One genotype was present in both root systems. The data suggest that assemblages of ericoid mycorrhizal fungi from hair roots of individual Ericaceae plants in dry sclerophyll forest habitats are characterised by relatively low genetic diversity.  相似文献   

13.
The Sebacinales are a monophyletic group of ubiquitous hymenomycetous mycobionts which form ericoid and orchid mycorrhizae, ecto- and ectendomycorrhizae, and nonspecific root endophytic associations with a wide spectrum of plants. However, due to the complete lack of fungal isolates derived from Ericaceae roots, the Sebacinales ericoid mycorrhizal (ErM) potential has not yet been tested experimentally. Here, we report for the first time isolation of a serendipitoid (formerly Sebacinales Group B) mycobiont from Ericaceae which survived in pure culture for several years. This allowed us to test its ability to form ericoid mycorrhizae with an Ericaceae host in vitro, to describe its development and colonization pattern in host roots over time, and to compare its performance with typical ErM fungi and other serendipitoids derived from non-Ericaceae hosts. Out of ten serendipitoid isolates tested, eight intracellularly colonized Vaccinium hair roots, but only the Ericaceae-derived isolate repeatedly formed typical ericoid mycorrhiza morphologically identical to ericoid mycorrhiza commonly found in naturally colonized Ericaceae, but yet different from ericoid mycorrhiza formed in vitro by the prominent ascomycetous ErM fungus Rhizoscyphus ericae. One Orchidaceae-derived isolate repeatedly formed abundant hyaline intracellular microsclerotia morphologically identical to those occasionally found in naturally colonized Ericaceae, and an isolate of Serendipita (= Piriformospora) indica produced abundant intracellular chlamydospores typical of this species. Our results confirm for the first time experimentally that some Sebacinales can form ericoid mycorrhiza, point to their broad endophytic potential in Ericaceae hosts, and suggest possible ericoid mycorrhizal specificity in Serendipitaceae.  相似文献   

14.
We investigated the occurrence of arbuscular mycorrhizal fungi in the roots of Isoëtes lacustris and I. echinospora. These submerged lycopsids are the only macrophyte species inhabiting the bottom of two acidified glacial lakes in the Czech Republic. Arbuscular mycorrhizal (AM) fungi were detected in the roots of both species but the percentage of root colonization was both low and variable. Nevertheless, planting Littorella uniflora in the sediments from Isoëtes rhizosphere revealed high levels of viable AM propagules in both lakes. While AM colonization of Isoëtes roots did not exceed 25%, the average colonization of Littorella roots amounted to more than 80%. Although colonization of quillwort roots by AM fungi is evident, the taxonomic identity and role of these AM fungi in plant growth remain unclear. In addition to AM fungi, root-colonizing dark septate endophytic fungi were observed in both Isoëtes species.  相似文献   

15.
The ability of wild blueberries to adapt to their harsh environment is believed to be closely related to their symbiosis with ericoid mycorrhizal fungi, which produce enzymes capable of organic matter mineralization. Although some of these fungi have been identified and characterized, we still know little about the microbial ecology of wild blueberry. Our study aims to characterize the fungal and bacterial rhizosphere communities of Vaccinium angustifolium (the main species encountered in wild blueberry fields). Our results clearly show that the fungal order Helotiales was the most abundant taxon associated with V. angustifolium. Helotiales contains most of the known ericoid mycorrhizal fungi which are expected to dominate in such a biotope. Furthermore, we found the dominant bacterial order was the nitrogen-fixing Rhizobiales. The Bradyrhizobium genus, whose members are known to form nodules with legumes, was among the 10 most abundant genera in the bacterial communities. In addition, Bradyrhizobium and Roseiarcus sequences significantly correlated with higher leaf-nitrogen content. Overall, our data documented fungal and bacterial community structure differences in three wild blueberry production fields.  相似文献   

16.
We aimed to evaluate if exotic ectomycorrhizal fungi from exotic pine plantations disperse through non-native, but also native, mammals in a mountain ecosystem devoid of native ECM plants. Among four non-native and three native mammal species, feces of non-native wild boar (Sus scrofa) and brown hare (Lepus europaeus), and native pampa fox (Lycalopex gymnocercus) were selected to inoculate seedlings of Pinus elliottii. These feces came from two transects in an elevation gradient (1350–2250 m asl) and different distances from a pine plantation (100–6000 m). We show that feces of wild boar, brown hare (non-native), and pampa fox (native) were effective as inoculum for establishing ectomycorrhizal pine seedlings. Through molecular analyses, we determined that two species are mostly consumed and successfully form ectomycorrhizas with pine roots: Suillus granulatus and Rhizopogon pseudoroseolus. We provide novel evidence for the long-distance dispersal of exotic ectomycorrhizal fungi by non-native and native animal vectors.  相似文献   

17.
Mycorrhizal fungi have a key role in nitrogen (N) cycling, particularly in boreal and temperate ecosystems. However, the significance of ectomycorrhizal fungal (EMF) diversity for this important ecosystem function is unknown. Here, EMF taxon-specific N uptake was analyzed via 15N isotope enrichment in complex root-associated assemblages and non-mycorrhizal root tips in controlled experiments. Specific 15N enrichment in ectomycorrhizas, which represents the N influx and export, as well as the exchange of 15N with the N pool of the root tip, was dependent on the fungal identity. Light or water deprivation revealed interspecific response diversity for N uptake. Partial taxon-specific N fluxes for ectomycorrhizas were assessed, and the benefits of EMF assemblages for plant N nutrition were estimated. We demonstrated that ectomycorrhizal assemblages provide advantages for inorganic N uptake compared with non-mycorrhizal roots under environmental constraints but not for unstressed plants. These benefits were realized via stress activation of distinct EMF taxa, which suggests significant functional diversity within EMF assemblages. We developed and validated a model that predicts net N flux into the plant based on taxon-specific 15N enrichment in ectomycorrhizal root tips. These results open a new avenue to characterize the functional traits of EMF taxa in complex communities.  相似文献   

18.
Forest trees are involved in root symbioses with hundreds of species of ectomycorrhizal fungi which constitute functional guilds able to improve the water and mineral nutrition of host trees. In temperate ecosystems, water shortage is a main factor limiting tree vitality. To assess how soil water conditions affected the physiological state of beech (Fagus silvatica L.) ectomycorrhizal roots, we monitored glucose respiration of two ectomycorrhizal types (Lactarius sp. and Cenococcum geophilum) during two complete growing seasons. Five stands of contrasting soil conditions were chosen in north-eastern France. The top soil horizons were equipped with micropsychrometers for measuring water potential and temperature. Glucose respiration on individual ectomycorrhizas was measured in vitro by trapping [14C]-CO2 from radiolabelled glucose. For soil water potential <-0.2 MPa, the potential respiration activity of C. geophilumectomycorrhizas was significantly less altered than that of Lactariussp. ectomycorrhizas, indicating that C. geophilumis more likely than Lactariussp. to maintain the physiological integrity of beech roots facing drought stress.  相似文献   

19.
外生菌根菌在火炬松人工林应用的研究   总被引:1,自引:2,他引:1  
连续6年研究了外生菌根菌在火炬松人工林的应用.结果表明,12个供试菌株均能不同程度地在火炬松根系上形成外生菌根.在12个供试菌株中,以松林小牛肝菌效果最佳,无论是在苗期还是上山造林,对促进寄主生长的效果均最好,且促进寄主生长的效果在立地条件较差的情况下表现得更为明显.  相似文献   

20.
Fine root acclimation to different environmental conditions is crucial for growth and sustainability of forest trees. Relatively small changes in fine root standing biomass (FRB), morphology or mycorrhizal symbiosis may result in a large change in forest carbon, nutrient and water cycles. We elucidated the changes in fine root traits and associated ectomycorrhizal (EcM) fungi in 12 Norway spruce stands across a climatic and N deposition gradient from subarctic‐boreal to temperate regions in Europe (68°N–48°N). We analysed the standing FRB and the ectomycorrhizal root tip biomass (EcMB, g m?2) simultaneously with measurements of the EcM root morphological traits (e.g. mean root length, root tissue density (RTD), N% in EcM roots) and frequency of dominating EcM fungi in different stands in relation to climate, soil and site characteristics. Latitude and N deposition explained the greatest proportion of variation in fine root traits. EcMB per stand basal area (BA) increased exponentially with latitude: by about 12.7 kg m?2 with an increase of 10° latitude from southern Germany to Estonia and southern Finland and by about 44.7 kg m?2 with next latitudinal 10° from southern to northern Finland. Boreal Norway spruce forests had 4.5 to 11 times more EcM root tips per stand BA, and the tips were 2.1 times longer, with 1.5 times higher RTD and about 1/3 lower N concentration. There was 19% higher proportion of root tips colonized by long‐distance exploration type forming EcM fungi in the southern forests indicating importance of EcM symbiont foraging strategy in fine root nutrient acquisition. In the boreal zone, we predict ca. 50% decrease in EcMB per stand BA with an increase of 2 °C annual mean temperature. Different fine root foraging strategies in boreal and temperate forests highlight the importance of complex studies on respective regulatory mechanisms in changing climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号