首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Human cord blood (hCB) is the main source of hematopoietic stem and progenitor cells (HSCs/PCs) for transplantation. Efforts to overcome relative shortages of HSCs/PCs have led to technologies to expand HSCs/PCs ex vivo. However, methods suitable for clinical practice have yet to be fully established.

Methodology/Principal Findings

In this study, we screened biologically active natural products for activity to promote expansion of hCB HSCs/PCs ex vivo, and identified Garcinol, a plant-derived histone acetyltransferase (HAT) inhibitor, as a novel stimulator of hCB HSC/PC expansion. During a 7-day culture of CD34+CD38 HSCs supplemented with stem cell factor and thrombopoietin, Garcinol increased numbers of CD34+CD38 HSCs/PCs more than 4.5-fold and Isogarcinol, a derivative of Garcinol, 7.4-fold. Furthermore, during a 7-day culture of CD34+ HSCs/PCs, Garcinol expanded the number of SCID-repopulating cells (SRCs) 2.5-fold. We also demonstrated that the capacity of Garcinol and its derivatives to expand HSCs/PCs was closely correlated with their inhibitory effect on HAT. The Garcinol derivatives which expanded HSCs/PCs inhibited the HAT activity and acetylation of histones, while inactive derivatives did not.

Conclusions/Significance

Our findings identify Garcinol as the first natural product acting on HSCs/PCs and suggest the inhibition of HAT to be an alternative approach for manipulating HSCs/PCs.  相似文献   

2.
3.

Background

Mycobacterium-induced granulomas are the interface between bacteria and host immune response. During acute infection dendritic cells (DCs) are critical for mycobacterial dissemination and activation of protective T cells. However, their role during chronic infection in the granuloma is poorly understood.

Methodology/Principal Findings

We report that an inflammatory subset of murine DCs are present in granulomas induced by Mycobacteria bovis strain Bacillus Calmette-guerin (BCG), and both their location in granulomas and costimulatory molecule expression changes throughout infection. By flow cytometric analysis, we found that CD11c+ cells in chronic granulomas had lower expression of MHCII and co-stimulatory molecules CD40, CD80 and CD86, and higher expression of inhibitory molecules PD-L1 and PD-L2 compared to CD11c+ cells from acute granulomas. As a consequence of their phenotype, CD11c+ cells from chronic lesions were unable to support the reactivation of newly-recruited, antigen 85B-specific CD4+IFNγ+ T cells or induce an IFNγ response from naïve T cells in vivo and ex vivo. The mechanism of this inhibition involves the PD-1:PD-L signaling pathway, as ex vivo blockade of PD-L1 and PD-L2 restored the ability of isolated CD11c+ cells from chronic lesions to stimulate a protective IFNγ T cell response.

Conclusions/Significance

Our data suggest that DCs in chronic lesions may facilitate latent infection by down-regulating protective T cell responses, ultimately acting as a shield that promotes mycobacterium survival. This DC shield may explain why mycobacteria are adapted for long-term survival in granulomatous lesions.  相似文献   

4.
Leung EL  Fiscus RR  Tung JW  Tin VP  Cheng LC  Sihoe AD  Fink LM  Ma Y  Wong MP 《PloS one》2010,5(11):e14062

Background

The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential.

Methodology/Principal Finding

The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44 cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44 cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44 cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas.

Conclusion/Significance

Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify the role of CD44 in tumor cell renewal and cancer propagation in the in vivo environment.  相似文献   

5.
6.

Background

Cooperation of CD4+ T helper cells with specific B cells is crucial for protective vaccination against pathogens by inducing long-lived neutralizing antibody responses. During infection with persistence-prone viruses, prolonged virus replication correlates with low neutralizing antibody responses. We recently described that a viral mutant of lymphocytic choriomeningitis virus (LCMV), which lacks a T helper epitope, counterintuitively induced an enhanced protective antibody response. Likewise, partial depletion of the CD4+ T cell compartment by using anti-CD4 antibodies enhanced protective antibodies.

Principal Findings

Here we have developed a protocol to selectively reduce the CD4+ T cell response against viral CD4+ T cell epitopes. We demonstrate that in vivo treatment with LCMV-derived MHC-II peptides induced non-responsiveness of specific CD4+ T cells without affecting CD4+ T cell reactivity towards other antigens. This was associated with accelerated virus-specific neutralizing IgG-antibody responses. In contrast to a complete absence of CD4+ T cell help, tolerisation did not impair CD8+ T cell responses.

Conclusions

This result reveals a novel “negative vaccination” strategy where specific CD4+ T cell unresponsiveness may be used to enhance the delayed protective antibody responses in chronic virus infections.  相似文献   

7.

Background

Although diseases associated with microvascular endothelial dysfunction are among the most prevalent illnesses to date, currently no method exists to isolate pure endothelial cells (EC) from skeletal muscle for in vivo or in vitro study.

Methodology

By utilizing multicolor fluorescent-activated cell sorting (FACS), we have isolated a distinct population of Sca-1+, CD31+, CD34dim and CD45cells from skeletal muscles of C57BL6 mice. Characterization of this population revealed these cells are functional EC that can be expanded several times in culture without losing their phenotype or capabilities to uptake acetylated low-density lipoprotein (ac-LDL), produce nitric oxide (NO) and form vascular tubes. When transplanted subcutaneously or intramuscularly into the tibialis anterior muscle, EC formed microvessels and integrated with existing vasculature.

Conclusion

This method, which is highly reproducible, can be used to study the biology and role of EC in diseases such as peripheral vascular disease. In addition this method allows us to isolate large quantities of skeletal muscle derived EC with potential for therapeutic angiogenic applications.  相似文献   

8.

Background

Through negative regulation of gene expression, microRNAs (miRNAs) can function as oncosuppressors in cancers, and can themselves show altered expression in various tumor types. Here, we have investigated medulloblastoma tumors (MBs), which arise from an early impairment of developmental processes in the cerebellum, where Notch signaling is involved in many of the cell-fate-determining stages. Notch regulates a subset of MB cells that have stem-cell-like properties and can promote tumor growth. On the basis of this evidence, we hypothesized that miRNAs targeting the Notch pathway can regulate these phenomena, and can be used in anti-cancer therapies.

Methodology/Principal Findings

In a screening of potential targets within Notch signaling, miR-34a was seen to be a regulator of the Notch pathway through its targeting of Notch ligand Delta-like 1 (Dll1). Down-regulation of Dll1 expression by miR-34a negatively regulates cell proliferation, and induces apoptosis and neural differentiation in MB cells. Using an inducible tetracycline on-off model of miR-34a expression, we show that in Daoy MB cells, Dll1 is the first target that is regulated in MB, as compared to the other targets analyzed here: Cyclin D1, cMyc and CDK4. MiR-34a expression negatively affects CD133+/CD15+ tumor-propagating cells, then we assay through reverse-phase proteomic arrays, Akt and Stat3 signaling hypo-phosphorylation. Adenoviruses carrying the precursor miR-34a induce neurogenesis of tumor spheres derived from a genetic animal model of MB (Patch1+/- p53-/-), thus providing further evidence that the miR-34a/Dll1 axis controls both autonomous and non autonomous signaling of Notch. In vivo, miR-34a overexpression carried by adenoviruses reduces tumor burden in cerebellum xenografts of athymic mice, thus demonstrating an anti-tumorigenic role of miR-34a in vivo.

Conclusions/Significance

Despite advances in our understanding of the pathogenesis of MB, one-third of patients with MB remain incurable. Here, we show that stable nucleic-acid-lipid particles carrying mature miR-34a can target Dll1 in vitro and show equal effects to those of adenovirus miR-34a cell infection. Thus, this technology forms the basis for their therapeutic use for the delivery of miR-34a in brain-tumor treatment, with no signs of toxicity described to date in non-human primate trials.  相似文献   

9.

Background

Natalizumab, a monoclonal humanized antibody targeting the alpha-4 chain of very late activation antigen 4 (VLA-4) exerts impressive therapeutic effects in patients with relapsing-remitting multiple sclerosis. Our objective was to study impacts of Natalizumab therapy on Foxp3+ T regulatory cells (Tregs) in multiple sclerosis (MS) patients.

Methodology

A combined approach of in vitro and ex vivo experiments using T cells isolated from the peripheral blood of healthy donors and Natalizumab treated MS patients was chosen. We determined binding of Natalizumab and its effects on the frequency, transmigratory behaviour and suppressive function of Tregs.

Principal Findings

Binding of Natalizumab and expression of CD49d (alpha-4 chain of VLA-4) differed between non-regulatory and regulatory cells. Albeit Foxp3+ Tregs had lower levels of CD49d, Natalizumab blocked the transmigration of Foxp3+ Tregs similar to non-regulatory T cells. The frequency of peripheral blood Tregs was unaffected by Natalizumab treatment. Natalizumab does not alter the suppressive capacity of CD4+CD25highCD127lowFoxp3+ Tregs under in vitro conditions. Furthermore, the impaired function of Tregs in MS patients is not restored by Natalizumab treatment.

Conclusions

We provide a first detailed analysis of Natalizumab effects on the regulatory T cell population. Our prospective study shows that Foxp3+ Tregs express lower levels of VLA-4 and bind less Natalizumab. We further the understanding of the mechanisms of action of Natalizumab by demonstrating that unlike other immunomodulatory drugs the beneficial therapeutic effects of the monoclonal antibody are largely independent of alterations in Treg frequency or function.  相似文献   

10.
11.

Background

Continued development of in-vitro procedures for expansion and differentiation of erythroid progenitor cells (EPC) is essential not only in hematology and stem cell research but also virology, in light of the strict erythrotropism of the clinically important human parvovirus B19.

Methodology/Principal Findings

We cultured EPC directly from ordinary blood samples, without ex vivo stem cell mobilization or CD34+ cell in vitro preselection. Profound increase in the absolute cell number and clustering activity were observed during culture. The cells obtained expressed the EPC marker combination CD36, CD71 and glycophorin, but none of the lymphocyte, monocyte or NK markers. The functionality of the generated EPC was examined by an in vitro infection assay with human parvovirus B19, tropic for BFU-E and CFU-E cells. Following infection (i) viral DNA replication and mRNA production were confirmed by quantitative PCR, and (ii) structural and nonstructural proteins were expressed in >50% of the cells. As the overall cell number increased 100–200 fold, and the proportion of competent EPC (CD34+ to CD36+) rose from <0.5% to >50%, the in vitro culture procedure generated the EPC at an efficiency of >10 000-fold. Comparative culturing of unselected PBMC and ex vivo-preselected CD34+ cells produced qualitatively and quantitatively similar yields of EPC.

Conclusions/Significance

This approach yielding EPC directly from unmanipulated peripheral blood is gratifyingly robust and will facilitate the study of myeloid infectious agents such as the B19 virus, as well as the examination of erythropoiesis and its cellular and molecular mechanisms.  相似文献   

12.

Background

We investigated the capacity of expanded cord blood-derived CD34+ hematopoietic progenitor cells to undergo respiratory epithelial differentiation ex vivo, and to engraft and attenuate alveolar disruption in injured newborn murine lungs in vivo.

Methods

Respiratory epithelial differentiation was studied in CD34+ cells expanded in the presence of growth factors and cytokines (“basic” medium), in one group supplemented with dexamethasone (“DEX”). Expanded or freshly isolated CD34+ cells were inoculated intranasally in newborn mice with apoptosis-induced lung injury. Pulmonary engraftment, lung growth and alveolarization were studied at 8 weeks post-inoculation.

Results

SP-C mRNA expression was seen in 2/7 CD34+ cell isolates expanded in basic media and in 6/7 isolates expanded in DEX, associated with cytoplasmic SP-C immunoreactivity and ultrastructural features suggestive of type II cell-like differentiation. Administration of expanding CD34+ cells was associated with increased lung growth and, in animals treated with DEX-exposed cells, enhanced alveolar septation. Freshly isolated CD34+ cells had no effect of lung growth or remodeling. Lungs of animals treated with expanded CD34+ cells contained intraalveolar aggregates of replicating alu-FISH-positive mononuclear cells, whereas epithelial engraftment was extremely rare.

Conclusion

Expanded cord blood CD34+ cells can induce lung growth and alveolarization in injured newborn lungs. These growth-promoting effects may be linked to paracrine or immunomodulatory effects of persistent cord blood-derived mononuclear cells, as expanded cells showed limited respiratory epithelial transdifferentiation.  相似文献   

13.

Background

MazF is an endoribonuclease encoded by Escherichia coli that specifically cleaves the ACA sequence of mRNA. In our previous report, conditional expression of MazF in the HIV-1 LTR rendered CD4+ T lymphocytes resistant to HIV-1 replication. In this study, we examined the in vivo safety and persistence of MazF-transduced cynomolgus macaque CD4+ T cells infused into autologous monkeys.

Methodology/Principal Findings

The in vivo persistence of the gene-modified CD4+ T cells in the peripheral blood was monitored for more than half a year using quantitative real-time PCR and flow cytometry, followed by experimental autopsy in order to examine the safety and distribution pattern of the infused cells in several organs. Although the levels of the MazF-transduced CD4+ T cells gradually decreased in the peripheral blood, they were clearly detected throughout the experimental period. Moreover, the infused cells were detected in the distal lymphoid tissues, such as several lymph nodes and the spleen. Histopathological analyses of tissues revealed that there were no lesions related to the infused gene modified cells. Antibodies against MazF were not detected. These data suggest the safety and the low immunogenicity of MazF-transduced CD4+ T cells. Finally, gene modified cells harvested from the monkey more than half a year post-infusion suppressed the replication of SHIV 89.6P.

Conclusions/Significance

The long-term persistence, safety and continuous HIV replication resistance of the mazF gene-modified CD4+ T cells in the non-human primate model suggests that autologous transplantation of mazF gene-modified cells is an attractive strategy for HIV gene therapy.  相似文献   

14.

Background

Use of peripheral blood- or bone marrow-derived progenitors for ischemic heart repair is a feasible option to induce neo-vascularization in ischemic tissues. These cells, named Endothelial Progenitors Cells (EPCs), have been extensively characterized phenotypically and functionally. The clinical efficacy of cardiac repair by EPCs cells remains, however, limited, due to cell autonomous defects as a consequence of risk factors. The devise of “enhancement” strategies has been therefore sought to improve repair ability of these cells and increase the clinical benefit.

Principal Findings

Pharmacologic inhibition of histone deacetylases (HDACs) is known to enhance hematopoietic stem cells engraftment by improvement of self renewal and inhibition of differentiation in the presence of mitogenic stimuli in vitro. In the present study cord blood-derived CD34+ were pre-conditioned with the HDAC inhibitor Valproic Acid. This treatment affected stem cell growth and gene expression, and improved ischemic myocardium protection in an immunodeficient mouse model of myocardial infarction.

Conclusions

Our results show that HDAC blockade leads to phenotype changes in CD34+ cells with enhanced self renewal and cardioprotection.  相似文献   

15.

Background

Epidemiological studies suggest that allogeneic immunity may inhibit HIV-1 transmission from mother to baby and is less frequent in multiparous than uniparous women. Alloimmune responses may also be elicited during unprotected heterosexual intercourse, which is associated ex vivo with resistance to HIV infection.

Methodology/Principal Findings

The investigation was carried out in well-defined heterosexual and homosexual monogamous partners, practising unprotected sex and a heterosexual cohort practising protected sex. Allogeneic CD4+ and CD8+ T cell proliferative responses were elicited by stimulating PBMC with the partners'' irradiated monocytes and compared with 3rd party unrelated monocytes, using the CFSE method. Significant increase in allogeneic proliferative responses was found in the CD4+ and CD8+ T cells to the partners'' irradiated monocytes, as compared with 3rd party unrelated monocytes (p≤0.001). However, a significant decrease in proliferative responses, especially of CD8+ T cells to the partners'' compared with 3rd party monocytes was consistent with tolerization, in both the heterosexual and homosexual partners (p<0.01). Examination of CD4+CD25+FoxP3+ regulatory T cells by flow cytometry revealed a significantly greater proportion of these cells in the homosexual than heterosexual partners practising unprotected sex (p<0.05). Ex vivo studies of infectivity of PBMC with HIV-1 showed significantly greater inhibition of infectivity of PBMC from heterosexual subjects practising unprotected compared with those practising protected sex (p = 0.02).

Conclusions/Significance

Both heterosexual and homosexual monogamous partners practising unprotected sex develop allogeneic CD4+ and CD8+ T cell proliferative responses to the partners'' unmatched cells and a minority may be tolerized. However, a greater proportion of homosexual rather than heterosexual partners developed CD4+CD25FoxP3+ regulatory T cells. These results, in addition to finding greater inhibition of HIV-1 infectivity in PBMC ex vivo in heterosexual partners practising unprotected, compared with those practising protected sex, suggest that allogeneic immunity may play a significant role in the immuno-pathogenesis of HIV-1 infection.  相似文献   

16.

Background

The recently described Designed Ankyrin Repeat Protein (DARPin) technology can produce highly selective ligands to a variety of biological targets at a low production cost.

Methodology/Principal Findings

To investigate the in vivo use of DARPins for future application to novel anti-HIV strategies, we identified potent CD4-specific DARPins that recognize rhesus CD4 and followed the fate of intravenously injected CD4-specific DARPin 57.2 in rhesus macaques. The human CD4-specific DARPin 57.2 bound macaque CD4+ cells and exhibited potent inhibitory activity against SIV infection in vitro. DARPin 57.2 or the control E3_5 DARPin was injected into rhesus macaques and the fate of cell-free and cell-bound CD4-specific DARPin was evaluated. DARPin-bound CD4+ cells were detected in the peripheral blood as early as 30 minutes after the injection, decreasing within 6 hours and being almost undetectable within 24 hours. The amount of DARPin bound was dependent on the amount of DARPin injected. CD4-specific DARPin was also detected on CD4+ cells in the lymph nodes within 30 minutes, which persisted with similar kinetics to blood. More extensive analysis using blood revealed that DARPin 57.2 bound to all CD4+ cell types (T cells, monocytes, dendritic cells) in vivo and in vitro with the amount of binding directly proportional to the amount of CD4 on the cell surface. Cell-free DARPins were also detected in the plasma, but were rapidly cleared from circulation.

Conclusions/Significance

We demonstrated that the CD4-specific DARPin can rapidly and selectively bind its target cells in vivo, warranting further studies on possible clinical use of the DARPin technology.  相似文献   

17.

Background

Antigen-specific IFN-γ producing CD4+ T cells are the main mediators of protection against Mycobacterium tuberculosis infection both under natural conditions and following vaccination. However these cells are responsible for lung damage and poor vaccine efficacy when not tightly controlled. Discovering new tools to control nonprotective antigen-specific IFN-γ production without affecting protective IFN-γ is a challenge in tuberculosis research.

Methods and Findings

Immunization with DNA encoding Ag85B, a candidate vaccine antigen of Mycobacterium tuberculosis, elicited in mice a low but protective CD4+ T cell-mediated IFN-γ response, while in mice primed with DNA and boosted with Ag85B protein a massive increase in IFN-γ response was associated with loss of protection. Both protective and non-protective Ag85B-immunization generated antigen-specific CD8+ T cells which suppressed IFN-γ-secreting CD4+ T cells. However, ex vivo ligation of 4-1BB, a member of TNF-receptor super-family, reduced the massive, non-protective IFN-γ responses by CD4+ T cells in protein-boosted mice without affecting the low protective IFN-γ-secretion in mice immunized with DNA. This selective inhibition was due to the induction of 4-1BB exclusively on CD8+ T cells of DNA-primed and protein-boosted mice following Ag85B protein stimulation. The 4-1BB-mediated IFN-γ inhibition did not require soluble IL-10, TGF-β, XCL-1 and MIP-1β. In vivo Ag85B stimulation induced 4-1BB expression on CD8+ T cells and in vivo 4-1BB ligation reduced the activation, IFN-γ production and expansion of Ag85B-specific CD4+ T cells of DNA-primed and protein-boosted mice.

Conclusion/Significance

Antigen-specific suppressor CD8+ T cells are elicited through immunization with the mycobacterial antigen Ag85B. Ligation of 4-1BB receptor further enhanced their suppressive activity on IFN-γ-secreting CD4+ T cells. The selective expression of 4-1BB only on CD8+ T cells in mice developing a massive, non-protective IFN-γ response opens novel strategies for intervention in tuberculosis pathology and vaccination through T-cell co-stimulatory-based molecular targeting.  相似文献   

18.

Background

In contrast to intestinal CD4+ regulatory T cells (Tregs), the generation and function of immunomodulatory intestinal CD8+ T cells is less well defined. To dissect the immunologic mechanisms of CD8+ T cell function in the mucosa, reactivity against hemagglutinin (HA) expressed in intestinal epithelial cells of mice bearing a MHC class-I-restricted T-cell-receptor specific for HA was studied.

Methodology and Principal Findings

HA-specific CD8+ T cells were isolated from gut-associated tissues and phenotypically and functionally characterized for the expression of Foxp3+ and their suppressive capacity. We demonstrate that intestinal HA expression led to peripheral induction of HA-specific CD8+Foxp3+ T cells. Antigen-experienced CD8+ T cells in this transgenic mouse model suppressed the proliferation of CD8+ and CD4+ T cells in vitro. Gene expression analysis of suppressive HA-specific CD8+ T cells revealed a specific up-regulation of CD103, Nrp1, Tnfrsf9 and Pdcd1, molecules also expressed on CD4+ Treg subsets. Finally, gut-associated dendritic cells were able to induce HA-specific CD8+Foxp3+ T cells.

Conclusion and Significance

We demonstrate that gut specific antigen presentation is sufficient to induce CD8+ Tregs in vivo which may maintain intestinal homeostasis by down-modulating effector functions of T cells.  相似文献   

19.

Background

Defects in APC and regulatory cells are associated with diabetes development in NOD mice. We have shown previously that NOD APC are not effective at stimulating CD4+CD25+ regulatory cell function in vitro. We hypothesize that failure of NOD APC to properly activate CD4+CD25+ regulatory cells in vivo could compromise their ability to control pathogenic cells, and activation of NOD APC could restore this defect, thereby preventing disease.

Methodology/Principal Findings

To test these hypotheses, we used the well-documented ability of complete Freund''s adjuvant (CFA), an APC activator, to prevent disease in NOD mice. Phenotype and function of CD4+CD25+ regulatory cells from untreated and CFA-treated NOD mice were determined by FACS, and in vitro and in vivo assays. APC from these mice were also evaluated for their ability to activate regulatory cells in vitro. We have found that sick NOD CD4+CD25+ cells expressed Foxp3 at the same percentages, but decreased levels per cell, compared to young NOD or non-NOD controls. Treatment with CFA increased Foxp3 expression in NOD cells, and also increased the percentages of CD4+CD25+Foxp3+ cells infiltrating the pancreas compared to untreated NOD mice. Moreover, CD4+CD25+ cells from pancreatic LN of CFA-treated, but not untreated, NOD mice transferred protection from diabetes. Finally, APC isolated from CFA-treated mice increased Foxp3 and granzyme B expression as well as regulatory function by NOD CD4+CD25+ cells in vitro compared to APC from untreated NOD mice.

Conclusions/Significance

These data suggest that regulatory T cell function and ability to control pathogenic cells can be enhanced in NOD mice by activating NOD APC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号