首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Representing signals as linear combinations of basis vectors sparsely selected from an overcomplete dictionary has proven to be advantageous for many applications in pattern recognition, machine learning, signal processing, and computer vision. While this approach was originally inspired by insights into cortical information processing, biologically plausible approaches have been limited to exploring the functionality of early sensory processing in the brain, while more practical applications have employed non-biologically plausible sparse coding algorithms. Here, a biologically plausible algorithm is proposed that can be applied to practical problems. This algorithm is evaluated using standard benchmark tasks in the domain of pattern classification, and its performance is compared to a wide range of alternative algorithms that are widely used in signal and image processing. The results show that for the classification tasks performed here, the proposed method is competitive with the best of the alternative algorithms that have been evaluated. This demonstrates that classification using sparse representations can be performed in a neurally plausible manner, and hence, that this mechanism of classification might be exploited by the brain.  相似文献   

2.
Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality.  相似文献   

3.
Sensory representations are not only sparse, but often overcomplete: coding units significantly outnumber the input units. For models of neural coding this overcompleteness poses a computational challenge for shaping the signal processing channels as well as for using the large and sparse representations in an efficient way. We argue that higher level overcompleteness becomes computationally tractable by imposing sparsity on synaptic activity and we also show that such structural sparsity can be facilitated by statistics based decomposition of the stimuli into typical and atypical parts prior to sparse coding. Typical parts represent large-scale correlations, thus they can be significantly compressed. Atypical parts, on the other hand, represent local features and are the subjects of actual sparse coding. When applied on natural images, our decomposition based sparse coding model can efficiently form overcomplete codes and both center-surround and oriented filters are obtained similar to those observed in the retina and the primary visual cortex, respectively. Therefore we hypothesize that the proposed computational architecture can be seen as a coherent functional model of the first stages of sensory coding in early vision.  相似文献   

4.
Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC) achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC). Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis) of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our method achieves the state-of-the-art results on AR, FERET, FRGC and LFW databases.  相似文献   

5.
Purpose: To propose a left ventricle (LV) motion estimation method based on sparse representation, in order to handle the spatial-varying intensity distortions caused by tissue deformation. Methods: For each myocardial landmark, an adaptive dictionary was generated by learning transformations from a training dataset. Then the landmark was tracked using sparse representation. Next, a point distribution model was applied to the overall tracking results. Finally, the dense displacement field of the LV myocardium was estimated based on the correspondence between each landmark. Using the dense displacement field estimated, the circumferential strain was calculated to assess the myocardial function. The performance of the proposed method was quantified by the average perpendicular distance (APD), the Dice metric, and the mean symmetric contour distance (SCD). Results: Comparing to the state-of-the-art techniques, the smallest value of APD and SCD, and the highest value of Dice can be obtained using the proposed method, for three public cardiac datasets. Moreover, the mean value of strain difference between the proposed method and the commercial software Medis Suite MR was −0.01, while the intraclass correlation coefficient between these two methods was 0.91. Conclusions: The proposed method could estimate the dense displacement field of the LV accurately, which outperforms other state-of-the-art techniques. The circumferential strain derived from the proposed method was in excellent agreement with that derived from the Medis Suite MR software, while segmental strain abnormalities were detected for most of the subjects with heart diseases, which indicates the potential of the proposed method for clinical usage.  相似文献   

6.
The method of adaptive approximations by Matching Pursuit makes it possible to decompose signals into basic components (called atoms). The approach relies on fitting, in an iterative way, functions from a large predefined set (called dictionary) to an analyzed signal. Usually, symmetric functions coming from the Gabor family (sine modulated Gaussian) are used. However Gabor functions may not be optimal in describing waveforms present in physiological and medical signals. Many biomedical signals contain asymmetric components, usually with a steep rise and slower decay. For the decomposition of this kind of signal we introduce a dictionary of functions of various degrees of asymmetry – from symmetric Gabor atoms to highly asymmetric waveforms. The application of this enriched dictionary to Otoacoustic Emissions and Steady-State Visually Evoked Potentials demonstrated the advantages of the proposed method. The approach provides more sparse representation, allows for correct determination of the latencies of the components and removes the "energy leakage" effect generated by symmetric waveforms that do not sufficiently match the structures of the analyzed signal. Additionally, we introduced a time-frequency-amplitude distribution that is more adequate for representation of asymmetric atoms than the conventional time-frequency-energy distribution.  相似文献   

7.
In this paper, based on low-rank representation and eigenface extraction, we present an improvement to the well known Sparse Representation based Classification (SRC). Firstly, the low-rank images of the face images of each individual in training subset are extracted by the Robust Principal Component Analysis (Robust PCA) to alleviate the influence of noises (e.g., illumination difference and occlusions). Secondly, Singular Value Decomposition (SVD) is applied to extract the eigenfaces from these low-rank and approximate images. Finally, we utilize these eigenfaces to construct a compact and discriminative dictionary for sparse representation. We evaluate our method on five popular databases. Experimental results demonstrate the effectiveness and robustness of our method.  相似文献   

8.

Background

Breast cancer is the leading cause of both incidence and mortality in women population. For this reason, much research effort has been devoted to develop Computer-Aided Detection (CAD) systems for early detection of the breast cancers on mammograms. In this paper, we propose a new and novel dictionary configuration underpinning sparse representation based classification (SRC). The key idea of the proposed algorithm is to improve the sparsity in terms of mass margins for the purpose of improving classification performance in CAD systems.

Methods

The aim of the proposed SRC framework is to construct separate dictionaries according to the types of mass margins. The underlying idea behind our method is that the separated dictionaries can enhance the sparsity of mass class (true-positive), leading to an improved performance for differentiating mammographic masses from normal tissues (false-positive). When a mass sample is given for classification, the sparse solutions based on corresponding dictionaries are separately solved and combined at score level. Experiments have been performed on both database (DB) named as Digital Database for Screening Mammography (DDSM) and clinical Full Field Digital Mammogram (FFDM) DBs. In our experiments, sparsity concentration in the true class (SCTC) and area under the Receiver operating characteristic (ROC) curve (AUC) were measured for the comparison between the proposed method and a conventional single dictionary based approach. In addition, a support vector machine (SVM) was used for comparing our method with state-of-the-arts classifier extensively used for mass classification.

Results

Comparing with the conventional single dictionary configuration, the proposed approach is able to improve SCTC of up to 13.9% and 23.6% on DDSM and FFDM DBs, respectively. Moreover, the proposed method is able to improve AUC with 8.2% and 22.1% on DDSM and FFDM DBs, respectively. Comparing to SVM classifier, the proposed method improves AUC with 2.9% and 11.6% on DDSM and FFDM DBs, respectively.

Conclusions

The proposed dictionary configuration is found to well improve the sparsity of dictionaries, resulting in an enhanced classification performance. Moreover, the results show that the proposed method is better than conventional SVM classifier for classifying breast masses subject to various margins from normal tissues.
  相似文献   

9.

Background

High-throughput genomic and proteomic data have important applications in medicine including prevention, diagnosis, treatment, and prognosis of diseases, and molecular biology, for example pathway identification. Many of such applications can be formulated to classification and dimension reduction problems in machine learning. There are computationally challenging issues with regards to accurately classifying such data, and which due to dimensionality, noise and redundancy, to name a few. The principle of sparse representation has been applied to analyzing high-dimensional biological data within the frameworks of clustering, classification, and dimension reduction approaches. However, the existing sparse representation methods are inefficient. The kernel extensions are not well addressed either. Moreover, the sparse representation techniques have not been comprehensively studied yet in bioinformatics.

Results

In this paper, a Bayesian treatment is presented on sparse representations. Various sparse coding and dictionary learning models are discussed. We propose fast parallel active-set optimization algorithm for each model. Kernel versions are devised based on their dimension-free property. These models are applied for classifying high-dimensional biological data.

Conclusions

In our experiment, we compared our models with other methods on both accuracy and computing time. It is shown that our models can achieve satisfactory accuracy, and their performance are very efficient.
  相似文献   

10.
A key question in understanding the neural basis of path integration is how individual, spatially responsive, neurons may self-organize into networks that can, through learning, integrate velocity signals to update a continuous representation of location within an environment. It is of vital importance that this internal representation of position is updated at the correct speed, and in real time, to accurately reflect the motion of the animal. In this article, we present a biologically plausible model of velocity path integration of head direction that can solve this problem using neuronal time constants to effect natural time delays, over which associations can be learned through associative Hebbian learning rules. The model comprises a linked continuous attractor network and competitive network. In simulation, we show that the same model is able to learn two different speeds of rotation when implemented with two different values for the time constant, and without the need to alter any other model parameters. The proposed model could be extended to path integration of place in the environment, and path integration of spatial view.  相似文献   

11.
Automatic species identification has many advantages over traditional species identification. Currently, most plant automatic identification methods focus on the features of leaf shape, venation and texture, which are promising for the identification of some plant species. However, leaf tooth, a feature commonly used in traditional species identification, is ignored. In this paper, a novel automatic species identification method using sparse representation of leaf tooth features is proposed. In this method, image corners are detected first, and the abnormal image corner is removed by the PauTa criteria. Next, the top and bottom leaf tooth edges are discriminated to effectively correspond to the extracted image corners; then, four leaf tooth features (Leaf-num, Leaf-rate, Leaf-sharpness and Leaf-obliqueness) are extracted and concatenated into a feature vector. Finally, a sparse representation-based classifier is used to identify a plant species sample. Tests on a real-world leaf image dataset show that our proposed method is feasible for species identification.  相似文献   

12.
Sparse coding is a popular approach to model natural images but has faced two main challenges: modelling low-level image components (such as edge-like structures and their occlusions) and modelling varying pixel intensities. Traditionally, images are modelled as a sparse linear superposition of dictionary elements, where the probabilistic view of this problem is that the coefficients follow a Laplace or Cauchy prior distribution. We propose a novel model that instead uses a spike-and-slab prior and nonlinear combination of components. With the prior, our model can easily represent exact zeros for e.g. the absence of an image component, such as an edge, and a distribution over non-zero pixel intensities. With the nonlinearity (the nonlinear max combination rule), the idea is to target occlusions; dictionary elements correspond to image components that can occlude each other. There are major consequences of the model assumptions made by both (non)linear approaches, thus the main goal of this paper is to isolate and highlight differences between them. Parameter optimization is analytically and computationally intractable in our model, thus as a main contribution we design an exact Gibbs sampler for efficient inference which we can apply to higher dimensional data using latent variable preselection. Results on natural and artificial occlusion-rich data with controlled forms of sparse structure show that our model can extract a sparse set of edge-like components that closely match the generating process, which we refer to as interpretable components. Furthermore, the sparseness of the solution closely follows the ground-truth number of components/edges in the images. The linear model did not learn such edge-like components with any level of sparsity. This suggests that our model can adaptively well-approximate and characterize the meaningful generation process.  相似文献   

13.
A reliable and accurate identification of the type of tumors is crucial to the proper treatment of cancers. In recent years, it has been shown that sparse representation (SR) by l1-norm minimization is robust to noise, outliers and even incomplete measurements, and SR has been successfully used for classification. This paper presents a new SR-based method for tumor classification using gene expression data. A set of metasamples are extracted from the training samples, and then an input testing sample is represented as the linear combination of these metasamples by l1-regularized least square method. Classification is achieved by using a discriminating function defined on the representation coefficients. Since l1-norm minimization leads to a sparse solution, the proposed method is called metasample-based SR classification (MSRC). Extensive experiments on publicly available gene expression data sets show that MSRC is efficient for tumor classification, achieving higher accuracy than many existing representative schemes.  相似文献   

14.
Sparse representation classification (SRC) is one of the most promising classification methods for supervised learning. This method can effectively exploit discriminating information by introducing a regularization terms to the data. With the desirable property of sparisty, SRC is robust to both noise and outliers. In this study, we propose a weighted meta-sample based non-parametric sparse representation classification method for the accurate identification of tumor subtype. The proposed method includes three steps. First, we extract the weighted meta-samples for each sub class from raw data, and the rationality of the weighting strategy is proven mathematically. Second, sparse representation coefficients can be obtained by regularization of underdetermined linear equations. Thus, data dependent sparsity can be adaptively tuned. A simple characteristic function is eventually utilized to achieve classification. Asymptotic time complexity analysis is applied to our method. Compared with some state-of-the-art classifiers, the proposed method has lower time complexity and more flexibility. Experiments on eight samples of publicly available gene expression profile data show the effectiveness of the proposed method.  相似文献   

15.
 The idea that a sparse representation is the computational principle of visual systems has been supported by Olshausen and Field [Nature (1996) 381: 607–609] and many other studies. On the other hand neurons in the inferotemporal cortex respond to moderately complex features called icon alphabets, and such neurons respond invariantly to the stimulus position. To incorporate this property into sparse representation, an algorithm is proposed that trains basis functions using sparse representations with shift invariance. Shift invariance means that basis functions are allowed to move on image data and that coefficients are equipped with shift invariance. The algorithm is applied to natural images. It is ascertained that moderately complex graphical features emerge that are not as simple as Gabor filters and not as complex as real objects. Shift invariance and moderately complex features correspond to the property of icon alphabets. The results show that there is another connection between visual information processing and sparse representations. Received: 3 November 1999 / Accepted in revised form: 17 February 2000  相似文献   

16.
Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-focus noisy image fusion by combining with the boundary handling of the convolutional sparse representation.By two-scale image decomposition,the input image is decomposed into base layer and detail layer.For the base layer,IPIO algorithm is used to obtain the optimized weights for fusion,whose value range is gained by fusing the edge information.Besides,the global information entropy is used as the fitness index of the IPIO,which has high efficiency especially for discrete optimization problems.For the detail layer,the fusion of its coefficients is completed by performing boundary processing when solving the convolution sparse representation in the frequency domain.The sum of the above base and detail layers is as the final fused image.Experimental results show that the proposed algorithm has a better fusion effect compared with the recent algorithms.  相似文献   

17.
Dopaminergic neuron activity has been modeled during learning and appetitive behavior, most commonly using the temporal-difference (TD) algorithm. However, a proper representation of elapsed time and of the exact task is usually required for the model to work. Most models use timing elements such as delay-line representations of time that are not biologically realistic for intervals in the range of seconds. The interval-timing literature provides several alternatives. One of them is that timing could emerge from general network dynamics, instead of coming from a dedicated circuit. Here, we present a general rate-based learning model based on long short-term memory (LSTM) networks that learns a time representation when needed. Using a naïve network learning its environment in conjunction with TD, we reproduce dopamine activity in appetitive trace conditioning with a constant CS-US interval, including probe trials with unexpected delays. The proposed model learns a representation of the environment dynamics in an adaptive biologically plausible framework, without recourse to delay lines or other special-purpose circuits. Instead, the model predicts that the task-dependent representation of time is learned by experience, is encoded in ramp-like changes in single-neuron activity distributed across small neural networks, and reflects a temporal integration mechanism resulting from the inherent dynamics of recurrent loops within the network. The model also reproduces the known finding that trace conditioning is more difficult than delay conditioning and that the learned representation of the task can be highly dependent on the types of trials experienced during training. Finally, it suggests that the phasic dopaminergic signal could facilitate learning in the cortex.  相似文献   

18.
Sparse coding algorithms trained on natural images can accurately predict the features that excite visual cortical neurons, but it is not known whether such codes can be learned using biologically realistic plasticity rules. We have developed a biophysically motivated spiking network, relying solely on synaptically local information, that can predict the full diversity of V1 simple cell receptive field shapes when trained on natural images. This represents the first demonstration that sparse coding principles, operating within the constraints imposed by cortical architecture, can successfully reproduce these receptive fields. We further prove, mathematically, that sparseness and decorrelation are the key ingredients that allow for synaptically local plasticity rules to optimize a cooperative, linear generative image model formed by the neural representation. Finally, we discuss several interesting emergent properties of our network, with the intent of bridging the gap between theoretical and experimental studies of visual cortex.  相似文献   

19.
System identification techniques—projection pursuit regression models (PPRs) and convolutional neural networks (CNNs)—provide state-of-the-art performance in predicting visual cortical neurons’ responses to arbitrary input stimuli. However, the constituent kernels recovered by these methods are often noisy and lack coherent structure, making it difficult to understand the underlying component features of a neuron’s receptive field. In this paper, we show that using a dictionary of diverse kernels with complex shapes learned from natural scenes based on efficient coding theory, as the front-end for PPRs and CNNs can improve their performance in neuronal response prediction as well as algorithmic data efficiency and convergence speed. Extensive experimental results also indicate that these sparse-code kernels provide important information on the component features of a neuron’s receptive field. In addition, we find that models with the complex-shaped sparse code front-end are significantly better than models with a standard orientation-selective Gabor filter front-end for modeling V1 neurons that have been found to exhibit complex pattern selectivity. We show that the relative performance difference due to these two front-ends can be used to produce a sensitive metric for detecting complex selectivity in V1 neurons.  相似文献   

20.
Su L  Wang L  Chen F  Shen H  Li B  Hu D 《PloS one》2012,7(5):e36147
An enhanced understanding of how normal aging alters brain structure is urgently needed for the early diagnosis and treatment of age-related mental diseases. Structural magnetic resonance imaging (MRI) is a reliable technique used to detect age-related changes in the human brain. Currently, multivariate pattern analysis (MVPA) enables the exploration of subtle and distributed changes of data obtained from structural MRI images. In this study, a new MVPA approach based on sparse representation has been employed to investigate the anatomical covariance patterns of normal aging. Two groups of participants (group 1:290 participants; group 2:56 participants) were evaluated in this study. These two groups were scanned with two 1.5 T MRI machines. In the first group, we obtained the discriminative patterns using a t-test filter and sparse representation step. We were able to distinguish the young from old cohort with a very high accuracy using only a few voxels of the discriminative patterns (group 1:98.4%; group 2:96.4%). The experimental results showed that the selected voxels may be categorized into two components according to the two steps in the proposed method. The first component focuses on the precentral and postcentral gyri, and the caudate nucleus, which play an important role in sensorimotor tasks. The strongest volume reduction with age was observed in these clusters. The second component is mainly distributed over the cerebellum, thalamus, and right inferior frontal gyrus. These regions are not only critical nodes of the sensorimotor circuitry but also the cognitive circuitry although their volume shows a relative resilience against aging. Considering the voxels selection procedure, we suggest that the aging of the sensorimotor and cognitive brain regions identified in this study has a covarying relationship with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号