首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ubiquitin proteasome pathway in plants has been shown to be important for many developmental processes. The E3 ubiquitin-protein ligases facilitate transfer of the ubiquitin moiety to substrate proteins. Many E3 ligases contain cullin proteins as core subunits. Here, we show that Arabidopsis (Arabidopsis thaliana) AtCUL3 proteins interact in yeast two-hybrid and in vitro pull-down assays with proteins containing a BTB/POZ (broad complex, tramtrack, bric-a-brac/pox virus and zinc finger) motif. By changing specific amino acid residues within the proteins, critical parts of the cullin and BTB/POZ proteins are defined that are required for these kinds of interactions. In addition, we show that AtCUL3 proteins assemble with the RING-finger protein AtRBX1 and are targets for the RUB-conjugation pathway. The analysis of AtCUL3a and AtCUL3b expression as well as several BTB/POZ-MATH genes indicates that these genes are expressed in all parts of the plant. The results presented here provide strong evidence that AtCUL3a and AtCUL3b can assemble in Arabidopsis with BTB/POZ-MATH and AtRBX1 proteins to form functional E3 ligases.  相似文献   

3.
Izumo, a sperm membrane protein, is essential for gamete fusion in the mouse. It has an Immunoglobulin (Ig) domain and an N-terminal domain for which neither the functions nor homologous sequences are known. In the present work we identified three novel proteins showing an N-terminal domain with significant homology to the N-terminal domain of Izumo. We named this region “Izumo domain,” and the novel proteins “Izumo 2,” “Izumo 3,” and “Izumo 4,” retaining “Izumo 1” for the first described member of the family. Izumo 1–3 are transmembrane proteins expressed specifically in the testis, and Izumo 4 is a soluble protein expressed in the testis and in other tissues. Electrophoresis under mildly denaturing conditions, followed by Western blot analysis, showed that Izumo 1, 3, and 4 formed protein complexes on sperm, Izumo 1 forming several larger complexes and Izumo 3 and 4 forming a single larger complex. Studies using different recombinant Izumo constructs suggested the Izumo domain possesses the ability to form dimers, whereas the transmembrane domain or the cytoplasmic domain or both of Izumo 1 are required for the formation of multimers of higher order. Co-immunoprecipitation studies showed the presence of other sperm proteins associated with Izumo 1, suggesting Izumo 1 forms a multiprotein membrane complex. Our results raise the possibility that Izumo 1 might be involved in organizing or stabilizing a multiprotein complex essential for the function of the membrane fusion machinery. Mol. Reprod. Dev. 76: 1188–1199, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

4.
5.
Ten-m/Odz/teneurins are a new family of four distinct type II transmembrane molecules. Their extracellular domains are composed of an array of eight consecutive EGF modules followed by a large globular domain. Two of the eight modules contain only 5 instead of the typical 6 cysteine residues and have the capability to dimerize in a covalent, disulfide-linked fashion. The structural properties of the extracellular domains of all four mouse Ten-m proteins have been analyzed using secreted, recombinant molecules produced by mammalian HEK-293 cells. Electron microscopic analysis supported by analytical ultracentrifugation data revealed that the recombinant extracellular domains of all Ten-m proteins formed homodimers. SDS-PAGE analysis under nonreducing conditions as well as negative staining after partial denaturation of the molecules indicated that the globular COOH-terminal domains of Ten-m1 and -m4 contained subdomains with a pronounced stability against denaturing agents, especially when compared with the homologous domains of Ten-m2 and -m3. Cotransfection experiments of mammalian cells with two different extracellular domains revealed that Ten-m molecules have also the ability to form heterodimers, a property that, combined with alternative splicing events, allows the formation of a multitude of molecules with different characteristics from a limited set of genes.  相似文献   

6.
Intact store-operated calcium entry (SOCE) mechanisms ensure the maintenance of Ca2+ homeostasis in cardiomyocytes while their dysregulation promotes the development of cardiomyopathies. To better understand this calcium handling process in cardiomyocytes, we sought to identify unknown protein partners of stromal interaction molecule 1 (STIM1), a main regulatory protein of SOCE. We identified the muscle-related coiled-coil protein (MURC), also known as Cavin-4, as a candidate and showed that MURC interacts with STIM1 in cardiomyocytes. This interaction occurs via the HR1 and ERM domains of MURC and STIM1, respectively. Our results also demonstrated that the overexpression of MURC in neonatal rat ventricular myocytes (NRVM) is sufficient to potentiate SOCE and that its HR1 domain is required to mediate this effect. Interestingly, the R140W-MURC mutant, a missense variant of the HR1 domain associated with human dilated cardiomyopathy, exacerbates the SOCE increase in NRVM. Although the endogenous expression of STIM1 and Ca2+ channel Orai1 is not modulated under these conditions, we showed that MURC increases the interaction between these proteins under resting conditions. Our study provides novel evidence that MURC regulates SOCE by interacting with STIM1 in cardiomyocytes. In addition, we identified a first potential mechanism by which the R140W mutation of MURC may contribute to calcium mishandling and the development of cardiomyopathies.  相似文献   

7.
8.
We have examined the tissue-specific expression of three rabbit genes that are closely related members of a subfamily of the phenobarbital-inducible cytochrome P-450 gene family. Analysis of the levels of mRNA in liver revealed that (a) cytochrome P-450PBc1 mRNA was not detectable in livers from control animals but was present in livers from animals treated with phenobarbital, (b) cytochrome P-450PBc2 was present in control tissue and was increased by about 3-fold 24 h after phenobarbital treatment, and (c) the levels of cytochrome P-450PBc3 mRNA was the same in livers from control and treated animals. In the kidney, only P-450PBc2 mRNA was detected at a level 15% of that in the liver, and the levels increased about 3-fold after phenobarbital treatment. None of the mRNAs was detected in lung tissue. Multiple species of RNA were observed that hybridized to probes for cytochrome P-450PBc1 and P-450PBc2 cDNAs by Northern blot analysis ranging in size from 2300 to 4000 nucleotides. Differential sites for polyadenylation probably cause the heterogeneity in size. A single species of RNA of 2200 nucleotides that hybridized to cytochrome P-450PBc3 cDNA probes was observed. These data demonstrate that three closely related cytochrome P-450 genes are differentially responsive to phenobarbital treatment and that they exhibit different tissue-specific patterns of expression.  相似文献   

9.
Nogo, MAG, and OMgp are myelin-associated proteins that bind to a neuronal Nogo-66 receptor (NgR/NgR1) to limit axonal regeneration after central nervous system injury. Within Nogo-A, two separate domains are known interact with NgR1. NgR1 is the founding member of the three-member NgR family, whereas Nogo-A (RTN4A) belongs to a four-member reticulon family. Here, we systematically mapped the interactions between these superfamilies, demonstrating novel nanomolar interactions of RTN2 and RTN3 with NgR1. Because RTN3 is expressed in spinal cord white matter, it may have a role in myelin inhibition of axonal growth. Further analysis of the Nogo-A and NgR1 interactions revealed a novel third interaction site between the proteins, suggesting a trivalent Nogo-A interaction with NgR1. We also confirmed here that MAG binds to NgR2, but not to NgR3. Unexpectedly, we found that OMgp interacts with MAG with a higher affinity compared with NgR1. To better define how these multiple structurally distinct ligands bind to NgR1, we examined a series of Ala-substituted NgR1 mutants for ligand binding activity. We found that the core of the binding domain is centered in the middle of the concave surface of the NgR1 leucine-rich repeat domain and surrounded by differentially utilized residues. This detailed knowledge of the molecular interactions between NgR1 and its ligands is imperative when assessing options for development of NgR1-based therapeutics for central nervous system injuries.  相似文献   

10.
11.
Bcl-2 family members and disease   总被引:9,自引:0,他引:9  
Apoptosis plays an important role during development and in the maintenance of multicellular organisms. Bcl-2 family members affect cell death in either a positive or negative fashion. Although some redundancy exists between family members, expression of certain family members is important during development in an organ-specific manner. The founding family member bcl-2 tends to be highly expressed in the embryo and declines postnatally following differentiation and maturation. Altered expression of bcl-2, as well as other family members, has been observed in disease states potentially affecting treatment modalities. Here we examine the distribution and role death repressors bcl-2, bcl-x(L) and bcl-w as well as death effectors bax and bak play regulating apoptosis in a tissue-specific manner. Understanding the normal role of these proteins during embryogenesis and in the mature organ will give us important insight into what goes awry in various disease states.  相似文献   

12.
Eukaryotic translation initiation factor 4E (eIF4E) is an essential component of the translational machinery that binds m(7)GTP and mediates the recruitment of capped mRNAs by the small ribosomal subunit. Recently, a number of proteins with homology to eIF4E have been reported in plants, invertebrates, and mammals. Together with the prototypical translation factor, these constitute a new family of structurally related proteins. To distinguish the prototypical translation factor eIF4E from other family members, it has been termed eIF4E-1 (Keiper, B. D., Lamphear, B. J., Deshpande, A. M., Jankowska-Anyszka, M., Aamodt, E. J., Blumenthal, T., and Rhoads, R. E. (2000) J. Biol. Chem. 275, 10590-10596). We describe the characterization of two eIF4E family members in the zebrafish Danio rerio. Based on their relative identities with human eIF4E-1, these zebrafish proteins are termed eIF4E-1A (82%) and eIF4E-1B (66%). eIF4E-1B, originally termed eIF4E(L), has been reported previously as the zebrafish eIF4E-1 counterpart (Fahrenkrug, S. C., Dahlquist, M. O., Clark, K., and Hackett, P. B. (1999) Differentiation 65, 191-201; Fahrenkrug, S. C., Joshi, B., Hackett, P. B., and Jagus, R. (2000) Differentiation 66, 15-22). Sequence comparisons suggest that the two genes probably evolved from a duplication event that occurred during vertebrate evolution. eIF4E-1A is expressed ubiquitously in zebrafish, whereas expression of eIF4E-1B is restricted to early embryonic development and to gonads and muscle of the tissues investigated. The ability of these two zebrafish proteins to bind m(7)GTP, eIF4G, and 4E-BP, as well as to complement yeast conditionally deficient in functional eIF4E, show that eIF4E-1A is a functional equivalent of human eIF4E-1. Surprisingly, although eIF4E-1B possesses all known residues thought to be required for interaction with the cap structure, eIF4G, and 4E-BPs, it fails to interact with any of these components, suggesting that this protein serves a role other than that assigned to eIF4E.  相似文献   

13.
The members of the alpha/beta hydrolase-fold family represent a functionally versatile group of enzymes with many important applications in biocatalysis. Given the technical significance of alpha/beta hydrolases in processes ranging from the kinetic resolution of enantiomeric precursors for pharmaceutical compounds to bulk products such as laundry detergent, optimizing and tailoring enzymes for these applications presents an ongoing challenge to chemists, biochemists, and engineers alike. A review of the recent literature on alpha/beta hydrolase engineering suggests that the early successes of "random processes" such as directed evolution are now being slowly replaced by more hypothesis-driven, focused library approaches. These developments reflect a better understanding of the enzymes' structure-function relationship and improved computational resources, which allow for more sophisticated search and prediction algorithms, as well as, in a very practical sense, the realization that bigger is not always better.  相似文献   

14.
The tautomerase superfamily consists of structurally homologous proteins that are characterized by a β-α-β fold and a catalytic amino-terminal proline. 4-Oxalocrotonate tautomerase (4-OT) family members have been identified and categorized into five subfamilies on the basis of multiple sequence alignments and the conservation of key catalytic and structural residues. Representative members from two subfamilies have been cloned, expressed, purified, and subjected to kinetic and structural characterization. The crystal structure of DmpI from Helicobacter pylori (HpDmpI), a 4-OT homolog in subfamily 3, has been determined to high resolution (1.8 Å and 2.1 Å) in two different space groups. HpDmpI is a homohexamer with an active site cavity that includes Pro-1, but lacks the equivalent of Arg-11 and Arg-39 found in 4-OT. Instead, the side chain of Lys-36 replaces that of Arg-11 in a manner similar to that observed in the trimeric macrophage migration inhibitory factor (MIF), which is the title protein of another family in the superfamily. The electrostatic surface of the active site is also quite different and suggests that HpDmpI might prefer small, monoacid substrates. A kinetic analysis of the enzyme is consistent with the structural analysis, but a biological role for the enzyme remains elusive. The crystal structure of DmpI from Archaeoglobus fulgidus (AfDmpI), a 4-OT homolog in subfamily-4, has been determined to 2.4 Å resolution. AfDmpI is also a homohexamer, with a proposed active site cavity that includes Pro-1, but lacks any other residues that are readily identified as catalytic ones related to 4-OT activity. Indeed, the electrostatic potential of the active site differs significantly in that it is mostly neutral, in contrast to the usual electropositive features found in other 4-OT family members, suggesting that AfDmpI might accommodate hydrophobic substrates. A kinetic analysis has been carried out, but does not provide any clues about the type of reaction the enzyme might catalyze.  相似文献   

15.
16.
17.
The outer antenna of higher-plant PSI (Photosystem I) is composed of four complexes [Lhc (light-harvesting complex) a1-Lhca4] belonging to the light-harvesting protein family. Difficulties in their purification have so far prevented the determination of their properties and most of the knowledge about Lhcas has been obtained from the study of the in vitro reconstituted antennas. In the present study we were able to purify the native complexes, showing that Lhca2/3 and Lhca1/4 form two functional heterodimers. Both dimers show red-fluorescence emission with maxima around 730 nm, as in the intact PSI complex. This indicates that the dimers are in their native state and that LHCI-680, which was previously assumed to be part of the PSI antenna, does not represent the native state of the system. The data show that the light-harvesting properties of the two dimers are functionally identical, concerning absorption, long-wavelength emission and fluorescence quantum yield, whereas they differ in their high-light response. Implications of the present study for the understanding of the energy transfer process in PSI are discussed. Finally, the comparison of the properties of the native dimers with those of the reconstituted complexes demonstrates that all of the major properties of the Lhcas are reproduced in the in vitro systems.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号