首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present studies were conducted to investigate the difference response of dermal fibroblasts to heat stress in Tharparkar and Karan-Fries cattle. Skin is the most important environmental interface providing a protective envelope to animals. In skin, dermal fibroblasts are the most regular cell constituent of dermis that is crucial for temperature homeostasis. The study aimed to examine the reactive oxygen species (ROS) formation, cytotoxicity (%) and heat shock protein 70 (HSP70) genes expression in dermal fibroblast of Tharparkar and Karan-Fries cattle and to assess whether resistance of dermal fibroblast to heat stress is breed specific. Dermal fibroblasts from ear pinna of Tharparkar and Karan-Fries cattle were exposed at 25 °C, 37 °C, 40 °C and 44 °C for 3 h to measure the ROS, cytotoxicity (%) and HSP 70 (HSPA1A, HSPA2 and HSPA8) genes’ expression. The results showed that ROS formation at low temperature (25 °C) decreased in both breeds as compared to control (37 °C) and the differences were significant (P<0.0001). Heat stress at 40 °C did not increase ROS formation significantly in Tharparkar but increased significantly (P<0.001) in Karan-Fries cattle. The overall cytotoxicity (%) was also found to be significantly different (P<0.001) between Tharparkar and Karan-Fries cattle, and on exposure to different temperatures (P<0.001). The cytotoxicity (%) in dermal fibroblast cells of Karan-fries cows was more than Tharparkar. The expression studies indicated that all HSP70 genes (HSPA8, HSPA1A and HSPA2) were up-regulated at different temperatures in both breeds. In Tharparkar, the relative mRNA expression of HSPA8 gene was higher but HSPA1A and HSPA2 genes were low as compared to Karan-Fries cattle. At 40 and 44 °C, the relative expressions of inducible HSP 70 genes (HSPA1A and HSPA2) were higher in Karan-Fries than Tharparkar. In summary, dermal fibroblast resistance to heat shock differed between breeds. Dermal fibroblasts of Tharparkar were observed to be more heat tolerant than crossbred Karan-Fries cattle. The study concludes that zebu cattle (Tharparkar) dermal fibroblasts are more adapted to tropical climatic condition than crossbreed cattle (Karan-Fries). Differences exist in dermal fibroblasts of heat adapted and non-adapted cattle.  相似文献   

2.
BackgroundClinical trials report benefits of the xanthophylls lutein and zeaxanthin for skin health. Here a keratinocyte culture was used to investigate the effects of in vitro xanthophyll treatment on gene expression and biochemical pathways.MethodsWe employed the EpiDerm tissue model, Affymetrix Human Genome Array U113, bioinformatics analyses, qPCR validation and biochemical assays for glycosaminoglycans.ResultsWe discovered 176 genes were significantly (p<0.05) down-regulated (log 2FC>2) and 47 genes were significantly up-regulated. Among the down-regulated genes we validated by qPCR marked reduction in expression of peptidase inhibitors. Bioinformatic analysis of the up-regulated genes implicated biosynthetic pathways for glycosaminoglycans. We assayed but found no increase in production of sulfated glycosaminoglycans, however there was a significant increase in biosynthesis of hyaluronic acid, a non-sulfated glycan.ConclusionsThe pattern of xanthophyll-regulated genes and the resulting biochemical responses can be linked with the responses observed in clinic trials.General significanceSkin health benefits from xanthophyll supplementation and this study reveals molecular mechanisms for some of the effects.  相似文献   

3.
4.
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a worldwide emerging pest of soft fruits, but its cold tolerance has not been thoroughly explored. We determined the cold tolerance strategy, low temperature thermal limits, and plasticity of cold tolerance in both male and female adult D. suzukii. We reared flies under common conditions (long days, 21 °C; control) and induced plasticity by rapid cold-hardening (RCH, 1 h at 0 °C followed by 1 h recovery), cold acclimation (CA, 5 days at 6 °C) or acclimation under fluctuating temperatures (FA). D. suzukii had supercooling points (SCPs) between −16 and −23 °C, and were chill-susceptible. 80% of control flies were killed after 1 h at −7.2 °C (males) or −7.5 °C (females); CA and FA improved survival of this temperature in both sexes, but RCH did not. 80% of control flies were killed after 70 h (male) or 92 h (female) at 0 °C, and FA shifted this to 112 h (males) and 165 h (females). FA flies entered chill coma (CTmin) at approximately −1.7 °C, which was ca. 0.5 °C colder than control flies; RCH and CA increased the CTmin compared to controls. Control and RCH flies exposed to 0 °C for 8 h took 30–40 min to recover movement, but this was reduced to <10 min in CA and FA. Flies placed outside in a field cage in London, Ontario, were all killed by a transient cold snap in December. We conclude that adult phenotypic plasticity is not sufficient to allow D. suzukii to overwinter in temperate habitats, and suggest that flies could overwinter in association with built structures, or that there may be additional cold tolerance imparted by developmental plasticity.  相似文献   

5.
Atlantic cod (Gadus morhua L.) exhibits polymorphic hemoglobin variants with the HbI locus showing a strong North-South geographic cline in frequency distribution of three main types (1/1, 1/2 and 2/2). This may indicate selective advantages of the different HbI types under various temperature regimes. Despite this only one study has directly examined the temperature preference of the two homozygous types, HbI-1/1 and HbI-2/2, whereas the preference of the heterozygote (HbI-1/2) has never previously been addressed. By exposing fish to a 4–19 °C temperature gradient in an annular preference chamber we recorded the preferred temperature of wild juvenile G. morhua of all three main Hbl types originating from an area where they co-exist. HbI-2/2 G. morhua preferred significantly cooler water (8.9 ± 0.2 °C) compared to the HbI-1/1 group (11 ± 0.6 °C), this difference, however, not being as distinct as previously reported. There was pronounced inter-individual variation in the temperature preference of the HbI-1/2 G. morhua ranging between 6.7 and 13.8 °C, and their overall preference (10.5 ± 0.9 °C) did not differ significantly from either of the homozygous HbI types. Notably, the mean range of utilized temperature (temperature span between 1st and 3rd quartile) was very similar between all 3 Hbl types with 3.2–3.5 °C. Considering the complexity of a trait like temperature preference, there are clearly many other factors besides HbI type that influence the thermal biology of cod, and therefore we also investigated possible associations between genotype and temperature preference for 12 variable candidate gene single nucleotide polymorphisms (SNPs) a priori expected to be related to growth and reproduction. There were, however, no significant correlations between temperature preference and any of the candidate gene SNPs indicating that none of these polymorphisms strongly associates with thermal behavior. Considering however the high-throughput genotyping methods becoming increasingly accessible there is great potential for association studies involving many more genetic markers to identify additional genetic polymorphisms that are important for temperature preference in G. morhua. In conclusion, we support the notion of a ‘warm’ (HbI-2/2) and a ‘cold’ (HbI-1/1) Hb type, although we suggest the difference to be more subtle than previously reported. Furthermore HbI-1/2 G. morhua shows rather inconsistent thermoregulatory behavior. To obtain a more definitive picture of the extent to which thermal niches are realized under natural conditions field observations in areas where the 3 HbI types co-exist should be performed.  相似文献   

6.
In order to systematically study the predatory behavior and digestion regularity of spiders, real-time fluorescence quantification PCR technique was used to detect the number of CO-I genes in Pardosa pseudoannulata after it preyed on rice planthoppers in different temperatures within different periods. At 28 °C, 0, 1, 2, 4, 8, 16, and 24 h after P. pseudoannulata preyed on rich planthopper, DNA was extracted from cephalothorax and abdomen of P. pseudoannulata. Routine PCR and real-time fluorescence PCR techniques were employed for CO-I gene amplification. The results show that: The prey liquid was temporarily stored in the sucking stomach of the spider head within 2 h after prey, and gradually transferred to the midgut of the abdomen with the prolongation of time. After 4 h, CO-I gene residues of rice planthopper in the cephalothorax gradually decreased. The CO-I gene of rice planthopper was basically transferred to the abdomen after 16 h. During 0–1 h, food contained in abdominal midgut and other digestive organs was very small, CO-I gene detection was not obvious. Over time, food entered into the midgut from the sucking stomach for digestion. During 2–4 h, CO-I gene amount increased, at 2–4 h, detected CO-I gene residue reached the peak; but rapidly declined after 8, 16, and 24 h, even it is still detectable. The results at different temperatures reveal that: As the temperature increased from 26 °C to 32 °C, CO-I gene residues of rich planthopper in cephalothorax and abdomen of P. pseudoannulata gradually decreased, which indicated that the digestion rate increased with the increase of temperature with some range. However, when the temperature continued to increase to 34 °C, the digestion rate decreased.  相似文献   

7.
8.
Sitodiplosis mosellana Géhin, one of the most important pests of wheat, undergoes obligatory diapause as a larva to survive unfavorable temperature extremes during hot summers and cold winters. To explore the potential roles of heat shock proteins (hsp) in this process, we cloned full-length cDNAs of hsp70, hsc70 and hsp90 from S. mosellana larvae, and examined their expression in response to diapause and short-term temperature stresses. Three hsps included all signature sequences of corresponding protein family and EEVD motifs. They showed high homology to their counterparts in other species, and the phylogenetic analysis of hsp90 was consistent with the known classification of insects. Expression of hsp70 and hsp90 were highly induced by diapause, particularly pronounced during summer and winter. Interestingly, hsp70 was more strongly expressed in summer than in winter whereas hsp90 displayed the opposite pattern. Abundance of hsc70 mRNA was comparable prior to and during diapauses and was highly up-regulated when insects began to enter the stage of post-diapause quiescence. Heat-stressed over-summering larvae (⩾30 °C) or cold-stressed over-wintering larvae (⩽0 °C) could further elevate expression of these three genes, but temperature extremes i.e. as high as 45 °C or as low as −15 °C failed to trigger such expression patterns. Notably, hsp70 was most sensitive to heat stress and hsp90 was most sensitive to cold stress. These results suggested that hsp70 and hsp90 play key roles in diapause maintenance and thermal stress; the former may be more prominent contributor to heat tolerance and the latter for cold tolerance. In contrast, hsc70 most likely is involved in developmental transition from diapause to post-diapause quiescence, and thus may serve as a molecular marker to predict diapause termination.  相似文献   

9.
10.
This study is aimed at identifying the proteins that are up-regulated during astaxanthin accumulation in Haematococcus lacustris. For this H. lacustris cells were cultivated in photobioreactors under normal light irradiance of 40 μE m?2 s?1 for 6 days and then induced to accumulate astaxanthin for 3 days further by exposure to continuous high irradiance of 200 μE m?2 s?1 with fluorescent lamps as light source after the cells reached the stationary phase in a nitrogen-depleted condition. Under this condition, the average astaxanthin content per cell increased from 91 mg/l up to 406 mg/l after 3 days of induction. The proteomics data from a two-dimensional electrophoretic comparison demonstrated that a combination of nitrogen source depletion and 1 h high light have significantly changed the pattern of protein expression in H. lacustris. A total of 49 protein spots were picked after 1 h of stress induction. They consisted of 13 down-regulated proteins and 36 up-regulated proteins. Fifteen proteins which had highly up-regulated expression were further analyzed by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The results will point toward interesting proteins that can be pursued for further analysis of astaxanthin biosynthesis pathway.  相似文献   

11.
Recovery that takes place in a cold environment after endurance exercise elevates PGC-1α mRNA whereas ERRα and NRF2 mRNA expression are inhibited. However, the effect of local skeletal muscle cooling on mitochondrial-related gene expression is unknown.PurposeTo determine the impact of local skeletal muscle cooling during recovery from an acute bout of exercise on mitochondrial-related gene expression.MethodsRecreationally-trained male cyclists (n=8, age 25±3 y, height 181±6 cm, weight 79±8 kg, 12.8±3.6% body fat, VO2peak 4.52±0.88 L·min−1 protocol) completed a 90-min variable intensity cycling protocol followed by 4 h of recovery. During recovery, ice was applied intermittently to one leg (ICE) while the other leg served as a control (CON). Intramuscular temperature was recorded continuously. Muscle biopsies were taken from each vastus lateralis at 4 h post-exercise for the analysis of mitochondrial-related gene expression.ResultsIntramuscular temperature was colder in ICE (26.7±1.1 °C) than CON (35.5±0.1 °C) throughout the 4 h recovery period (p<0.001). There were no differences in expression of PGC-1α, TFAM, NRF1, NRF2, or ERRα mRNA between ICE and CON after the 4 h recovery period.ConclusionLocal muscle cooling after exercise does not impact the expression of mitochondrial biogenesis-related genes compared to recovery from exercise in control conditions. When these data are considered with previous research, the stimuli for cold-induced gene expression alterations may be related to factors other than local muscle temperature. Additionally, different intramuscular temperatures should be examined to determine dose-response of mitochondrial-related gene expression.  相似文献   

12.
13.
Allograft inflammatory factor-1 (AIF-1), an interferon (IFN)-γ-inducible calcium-binding cytokine, is associated with the inflammatory response and defense. We cloned and analyzed the expression pattern of the AIF-1 gene of the pearl oyster Pinctada martensii, hereafter designated PmAIF-1. The full-length PmAIF-1 cDNA is 946 bp in length and consists of a 5′-untranslated region (UTR) of 120 bp, a 3′-UTR of 376 bp, and an open reading frame (ORF) of 450 bp encoding a polypeptide of 149 amino acids with an estimated molecular mass of 17 kDa. Sequence analysis reveals that PmAIF-1 contains two EF hand Ca+2-binding motifs like those in previously characterized AIF-1s while alignment with known AIF-1 protein sequences reveals higher similarity to invertebrate orthologs than to those of vertebrates.Quantitative PCR analysis reveals that PmAIF-1 is constitutively expressed, with the highest expression detected in hemocytes, and the expression level of PmAIF-1 mRNA was significantly up-regulated in hemocytes, gill, digestive gland under bacterial challenge and tissue injury. After challenged by gram-negative bacteria Vibrio alginolyticus and Vibrio parahaemolyticus, gram-positive bacteria Bacillus subtilis, the expression level of this gene in hemocytes were all up-regulated and reached the maximum point at 12 h (5.80 folds, P < 0.01), 6 h (5.02 folds, P < 0.01) and 12 h (5.49 folds, P < 0.01), respectively. Under shell damage and mantle injury, PmAIF-1 mRNA increased gradually in the first 3 h and reached a peak of expression at 6 h post-injury. These findings suggest that PmAIF-1 is an acute-response protein involved in the innate immune responses of pearl oysters, and provide general information about the mechanisms of innate immune defense against bacterial infection in pearl oysters.  相似文献   

14.
《Journal of plant physiology》2014,171(3-4):292-300
A volatile metabolite, 2-methylisoborneol (2-MIB), causes an unpleasant taste and odor in tap water. Some filamentous cyanobacteria produce 2-MIB via a two-step biosynthetic pathway: methylation of geranyl diphosphate (GPP) by methyl transferase (GPPMT), followed by the cyclization of methyl-GPP by monoterpene cyclase (MIBS). We isolated the genes encoding GPPMT and MIBS from Pseudanabaena galeata, a filamentous cyanobacterium known to be a major causal organism of 2-MIB production in Japanese lakes. The predicted amino acid sequence showed high similarity with that of Pseudanabaena limnetica (96% identity in GPPMT and 97% identity in MIBS). P. galeata was cultured at different temperatures to examine the effect of growth conditions on the production of 2-MIB and major metabolites. Gas chromatograph–mass spectrometry (GC–MS) measurements showed higher accumulation of 2-MIB at 30 °C than at 4 °C or 20 °C after 24 h of culture. Real-time-RT PCR analysis showed that the expression levels of the genes encoding GPPMT and MIBS decreased at 4 °C and increased at 30 °C, compared with at 20 °C. Furthermore, metabolite analysis showed dramatic changes in primary metabolite concentrations in cyanobacteria grown at different temperatures. The data indicate that changes in carbon flow in the TCA cycle affect 2-MIB biosynthesis at higher temperatures.  相似文献   

15.
Alkyl hydroperoxide reductase (AhpC) is known to detoxify peroxides and reactive sulfur species (RSS). However, the relationship between its expression and combating of abiotic stresses is still not clear. To investigate this relationship, the genes encoding the alkyl hydroperoxide reductase (ahpC) from Anabaena sp. PCC 7120 were introduced into E. coli using pGEX-5X-2 vector and their possible functions against heat, salt, carbofuron, cadmium, copper and UV-B were analyzed. The transformed E. coli cells registered significantly increase in growth than the control cells under temperature (47 °C), NaCl (6% w/v), carbofuron (0.025 mg ml?1), CdCl2 (4 mM), CuCl2 (1 mM), and UV-B (10 min) exposure. Enhanced expression of ahpC gene as measured by semi-quantitative RT-PCR under aforementioned stresses at different time points demonstrated its role in offering tolerance against multiple abiotic stresses.  相似文献   

16.
17.
18.
Due to the need for more rapid and reliable detection, quantification and enumeration of harmful algal species the use of molecular methods are increasingly being used in monitoring and field studies. However, many studies often require sample fixation to allow for transportation before analyses are conducted. Here, we describe the effects of six fixatives (acidified Lugol's iodine with or without sodium thiosulphate, glutaraldehyde, paraformaldehyde (PFA), formalin and ethanol) on quantitative real-time polymerase chain reaction (qPCR) amplification with Taqman probes. We applied extracted total genomic DNA from four harmful algal species from Danish waters, representing three dinoflagellates (Alexandrium tamarense, Karenia mikimotoi, Karlodinium veneficum and a haptophyte (Prymnesium parvum). The Cq values generated on the qPCR amplification plot were compared to those of an unfixed sample that acted as a control. For all species positive amplifications were achieved from DNA templates from all preserved samples. However, amplification efficiencies between fixatives and species varied. Yet it was found that Lugol's iodine was the most ideal short-term fixative for enumeration of cells by qPCR as well as being the safest to handle. The effect of age on Lugol's iodine fixed samples was also addressed. Samples were fixed and stored at 5 °C in the dark and total genomic DNA extracted after 24 h, 72 h, 1 week, 2 weeks, 1 month and 2 months. Samples remained stable for 1 month for A. tamarense and K. veneficum and 2 months for K. mikimotoi and P. parvum.  相似文献   

19.
Folate deficiency contributes to impaired adult hippocampal neurogenesis, yet the mechanisms remain unclear. Here we use HT-22 hippocampal neuron cells as model to investigate the effect of folate deprivation (FD) on cell proliferation and apoptosis, and to elucidate the underlying mechanism. FD caused cell cycle arrest at G0/G1 phase and increased the rate of apoptosis, which was associated with disrupted expression of folate transport and methyl transfer genes. FOLR1 and SLC46A1 were (P < 0.01) down-regulated, while SLC19A1 was up-regulated (P < 0.01) in FD group. FD cells exhibited significantly (P < 0.05) higher protein content of BHMT, MAT2b and DNMT3a, as well as increased SAM/SAH concentrations and global DNA hypermethylation. The expression of the total and all the 3 classes of IGF-1 mRNA variants was significantly (P < 0.01) down-regulated and IGF-1 concentration was decreased (P < 0.05) in the culture media. IGF-1 signaling pathway was also compromised with diminished activation (P < 0.05) of STAT3, AKT and mTOR. CpG hypermethylation was detected in the promoter regions of IGF-1 and FOLR1 genes, while higher SLC19A1 mRNA corresponded to hypomethylation of its promoter. IGF-1 supplementation in FD media significantly abolished FD-induced decrease in cell viability. However, IGF-1 had limited effect in rescuing the cell phenotype when added 24 h after FD. Taken together, down-regulation of IGF-1 expression and signaling is involved in FD-induced cell cycle arrest and apoptosis in HT-22 hippocampal neuron cells, which is associated with an abnormal activation of methyl transfer pathway and hypermethylation of IGF-1 gene promoter.  相似文献   

20.
Honey bee population declines are of global concern. Numerous factors appear to cause these declines including parasites, pathogens, malnutrition and pesticides. Residues of the organophosphate acaricide coumaphos and the neonicotinoid insecticide imidacloprid, widely used to combat Varroa mites and for crop protection in agriculture, respectively, have been detected in wax, pollen and comb samples. Here, we assess the effects of these compounds at different doses on the viability of sperm stored in the honey bee queens’ spermatheca. Our results demonstrate that sub-lethal doses of imidacloprid (0.02 ppm) decreased sperm viability by 50%, 7 days after treatment. Sperm viability was a downward trend (about 33%) in queens treated with high doses of coumaphos (100 ppm), but there was not significant difference. The expression of genes that are involved in development, immune responses and detoxification in honey bee queens and workers exposed to chemicals was measured by qPCR analysis. The data showed that expression levels of specific genes were triggered 1 day after treatment. The expression levels of P450 subfamily genes, CYP306A1, CYP4G11 and CYP6AS14 were decreased in honey bee queens treated with low doses of coumaphos (5 ppm) and imidacloprid (0.02 ppm). Moreover, these two compounds suppressed the expression of genes related to antioxidation, immunity and development in queens at day 1. Up-regulation of antioxidants by these compounds in worker bees was observed at day 1. Coumaphos also caused a repression of CYP306A1 and CYP4G11 in workers. Antioxidants appear to prevent chemical damage to honey bees. We also found that DWV replication increased in workers treated with imidacloprid. This research clearly demonstrates that chemical exposure can affect sperm viability in queen honey bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号