首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD4+CD25+调节性T细胞发挥效应的分子机制   总被引:1,自引:0,他引:1  
调节性T细胞是一群具有免疫调节(或免疫抑制)作用的细胞,Foxp3 CD4 CD25 调节性T细胞约占CD4 T细胞的5% ̄15%,主要是CD4 CD8-CD25-单阳性胸腺细胞在胸腺的自然选择过程中产生的,也可以通过外周诱导而产生。它通过细胞接触依赖机制和抑制性细胞因子依赖机制主动抑制自身免疫T细胞的活化,维持自稳状态。现对Foxp3 CD4 CD25 T细胞群的一些特征性分子在其效应机制中的作用进行综述。  相似文献   

2.
CD4+CD25+调节性T细胞作用机制的双模式   总被引:1,自引:0,他引:1  
高波  熊思东 《生命的化学》2006,26(2):131-133
CD4 CD25 调节性T细胞是具有免疫抑制功能的细胞群,在多种生理病理过程中发挥了重要作用。它们的作用机制主要包括细胞-细胞接触依赖和可溶性细胞因子介导两种抑制模式。由于CD4 CD25 调节性T细胞的抑制机制复杂,争议较大,进一步阐明它们的作用机制将有利于多种免疫相关疾病的防治。  相似文献   

3.
CD4+CD25+调节性T细胞   总被引:13,自引:0,他引:13  
调节性T细胞(regulatory T cells,Treg)是机体维持自身耐受的重要组成部分。CD4^ CD25^ Treg细胞来源于胸腺,其主要功能是抑制自身反应性T细胞,并且其作用是通过直接的Treg-T效应细胞之间的相互接触方式来实现的。CD4^ CD25^ Treg细胞可分泌多种抑制性细胞因子,但与其抑制功能关系并不明确,目前有证据表明GITR和Foxp3与CD4^ CD25^ Treg细胞的抑制功能有关,并且Foxp3已作为CD4^ CD25^ Treg细胞的特异性标志。通过IL-10、TGF-β等抑制性细胞因子、imDC以及转基因技术可以产生具有免疫抑制功能的调节性T细胞。调节性T细胞在免疫相关性疾病、肿瘤免疫和抗感染免疫等方面具有重要意义。  相似文献   

4.
Costimulation with the recombinant SA-4-1BBL agonist of 4-1BB receptor on conventional CD4+ T cells (Tconvs) overcomes the suppression mediated by naturally occurring CD4+CD25+FoxP3+ T regulatory cells (Tregs). The mechanistic basis of this observation has remained largely unknown. Herein we show that Tconvs, but not Tregs, are the direct target of SA-4-1BBL-mediated evasion of Treg suppression. IL-2 produced by Tconvs in response to 4-1BB signaling is both necessary and sufficient for overcoming Treg suppression. Supernatant from Tconvs stimulated with SA-4-1BBL contains high levels of IL-2 and overcomes Treg suppression in ex vivo Tconv:Treg cocultures. Removal of IL-2 from such supernatant restores Treg suppression and repletion of Tconv:Treg cocultures with exogenous recombinant IL-2 overcomes suppression. This study establishes 4-1BB signaling as a key circuit that regulates physical and functional equilibrium between Tregs and Tconvs with important implications for immunotherapy for indications where a fine balance between Tregs and Teffs plays a decisive role.  相似文献   

5.
The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes after 12 weeks of age and is the most extensively studied animal model of human Type 1 diabetes (T1D). Cell transfer studies in irradiated recipient mice have established that T cells are pivotal in T1D pathogenesis in this model. We describe herein a simple method to rapidly induce T1D by adoptive transfer of purified, primary CD4+ T cells from pre-diabetic NOD mice transgenic for the islet-specific T cell receptor (TCR) BDC2.5 into NOD.SCID recipient mice. The major advantages of this technique are that isolation and adoptive transfer of diabetogenic T cells can be completed within the same day, irradiation of the recipients is not required, and a high incidence of T1D is elicited within 2 weeks after T cell transfer. Thus, studies of pathogenesis and therapeutic interventions in T1D can proceed at a faster rate than with methods that rely on heterogenous T cell populations or clones derived from diabetic NOD mice.  相似文献   

6.

Background

IL-9 is a growth factor for T- and mast-cells that is secreted by human Th2 cells. We recently reported that IL-4+TGF-β directs mouse CD4+CD25CD62L+ T cells to commit to inflammatory IL-9 producing CD4+ T cells.

Methodology/Principal Findings

Here we show that human inducible regulatory T cells (iTregs) also express IL-9. IL-4+TGF-β induced higher levels of IL-9 expression in plate bound-anti-CD3 mAb (pbCD3)/soluble-anti-CD28 mAb (sCD28) activated human resting memory CD4+CD25CD45RO+ T cells as compared to naïve CD4+CD25CD45RA+ T cells. In addition, as compared to pbCD3/sCD28 plus TGF-β stimulation, IL-4+TGF-β stimulated memory CD4+CD25CD45RO+ T cells expressed reduced FOXP3 protein. As analyzed by pre-amplification boosted single-cell real-time PCR, human CD4+IL-9+ T cells expressed GATA3 and RORC, but not IL-10, IL-13, IFNγ or IL-17A/F. Attempts to optimize IL-9 production by pbCD3/sCD28 and IL-4+TGF-β stimulated resting memory CD4+ T cells demonstrated that the addition of IL-1β, IL-12, and IL-21 further enhance IL-9 production.

Conclusions/Significance

Taken together these data show both the differences and similarities between mouse and human CD4+IL9+ T cells and reaffirm the powerful influence of inflammatory cytokines to shape the response of activated CD4+ T cells to antigen.  相似文献   

7.
IL-2 receptor (IL-2R) signaling is essential for optimal stability and function of CD4+CD25hiFOXP3+ regulatory T cells (Treg); a cell type that plays an integral role in maintaining tolerance. Thus, we hypothesized that decreased response to IL-2 may be a common phenotype of subjects who have autoimmune diseases associated with variants in the IL2RA locus, including T1D and MS, particularly in cells expressing the high affinity IL-2R alpha chain (IL-2RA or CD25). To examine this question we used phosphorylation of STAT5 (pSTAT5) as a downstream measure of IL-2R signaling, and found a decreased response to IL-2 in CD4+CD25hi T cells of T1D and MS, but not SLE patients. Since the IL2RArs2104286 haplotype is associated with T1D and MS, we measured pSTAT5 in controls carrying the rs2104286 risk haplotype to test whether this variant contributed to reduced IL-2 responsiveness. Consistent with this, we found decreased pSTAT5 in subjects carrying the rs2104286 risk haplotype. Reduced IL-2R signaling did not result from lower CD25 expression on CD25hi cells; instead we detected increased CD25 expression on naive Treg from controls carrying the rs2104286 risk haplotype, and subjects with T1D and MS. However the rs2104286 risk haplotype correlated with increased soluble IL-2RA levels, suggesting that shedding of the IL-2R may account in part for the reduced IL-2R signaling associated with the rs2104286 risk haplotype. In addition to risk variants in IL2RA, we found that the T1D-associated risk variant of PTPN2rs1893217 independently contributed to diminished IL-2R signaling. However, even when holding genotype constant at IL2RA and PTPN2, we still observed a significant signaling defect in T1D and MS patients. Together, these data suggest that multiple mechanisms converge in disease leading to decreased response to IL-2, a phenotype that may eventually lead to loss of tolerance and autoimmunity.  相似文献   

8.
Prior reports have shown that CD4(+)CD25(+) regulatory T cells suppress naive T cell responses by inhibiting IL-2 production. In this report, using an Ag-specific TCR transgenic system, we show that naive T cells stimulated with cognate Ag in the presence of preactivated CD4(+)CD25(+) T cells also become refractory to the mitogenic effects of IL-2. T cells stimulated in the presence of regulatory T cells up-regulated high affinity IL-2R, but failed to produce IL-2, express cyclins or c-Myc, or exit G(0)-G(1). Exogenous IL-2 failed to break the mitotic block, demonstrating that the IL-2 production failure was not wholly responsible for the proliferation defect. This IL-2 unresponsiveness did not require the continuous presence of CD4(+)CD25(+) regulatory T cells. The majority of responder T cells reisolated after coculture with regulatory cells failed to proliferate in response to IL-2, but were not anergic and proliferated in response to Ag. The mitotic block was also dissociated from the antiapoptotic effects of IL-2, because IL-2 still promoted the survival of T cells that had been cocultured with CD4(+)CD25(+) T cells. IL-2-induced STAT5 phosphorylation in the cocultured responder cells was intact, implying that the effects of the regulatory cells were downstream of receptor activation. Our results therefore show that T cell activation in the presence of CD4(+)CD25(+) regulatory T cells can induce an alternative stimulation program characterized by up-regulation of high affinity IL-2R, but a failure to produce IL-2, and uncoupling of the mitogenic and antiapoptotic effects of IL-2.  相似文献   

9.
Due to its critical role in NK cell differentiation and CD8+ T cell homeostasis, the importance of IL-15 is more firmly established for cytolytic effectors of the immune system than for CD4+ T cells. The increased levels of IL-15 found in several CD4+ T cell-driven (auto-) immune diseases prompted us to examine how IL-15 influences murine CD4+ T cell responses to low dose TCR-stimulation in vitro. We show that IL-15 exerts growth factor activity on both CD4+ and CD8+ T cells in a TCR-dependent and Cyclosporin A-sensitive manner. In CD4+ T cells, IL-15 augmented initial IL-2-dependent expansion and once IL-15Rα was upregulated, IL-15 sustained the TCR-induced expression of IL-2/15Rβ, supporting proliferation independently of secreted IL-2. Moreover, IL-15 counteracts CD4+ T cell suppression by a gradually expanding CD25HighCD4+ T cell subset that expresses Foxp3 and originates from CD4+CD25+ Tregs. These in vitro data suggest that IL-15 may dramatically strengthen the T cell response to suboptimal TCR-triggering by overcoming an activation threshold set by Treg that might create a risk for autoimmune pathology.  相似文献   

10.
Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells   总被引:15,自引:0,他引:15  
Despite expression of the high-affinity IL-2R, CD4(+)CD25(+) regulatory T cells (Tregs) are hypoproliferative upon IL-2R stimulation in vitro. However the mechanisms by which CD4(+)CD25(+) T cells respond to IL-2 signals are undefined. In this report, we examine the cellular and molecular responses of CD4(+)CD25(+) Tregs to IL-2. IL-2R stimulation results in a G(1) cell cycle arrest, cellular enlargement and increased cellular survival of CD4(+)CD25(+) T cells. We find a distinct pattern of IL-2R signaling in which the Janus kinase/STAT pathway remains intact, whereas IL-2 does not activate downstream targets of phosphatidylinositol 3-kinase. Negative regulation of phosphatidylinositol 3-kinase signaling and IL-2-mediated proliferation of CD4(+)CD25(+) T cells is inversely associated with expression of the phosphatase and tensin homologue deleted on chromosome 10, PTEN.  相似文献   

11.
Murine CD4(+)CD25(+) T regulatory (Treg) cells were cocultured with CD4(+)CD25(-) Th cells and APCs or purified B cells and stimulated by anti-CD3 mAb. Replacement of APCs by B cells did not significantly affect the suppression of CD4(+)CD25(-) Th cells. When IL-4 was added to separate cell populations, this cytokine promoted CD4(+)CD25(-) Th and CD4(+)CD25(+) Treg cell proliferation, whereas the suppressive competence of CD4(+)CD25(+) Treg cells was preserved. Conversely, IL-4 added to coculture of APCs, CD4(+)CD25(-) Th cells, and CD4(+)CD25(+) Treg cells inhibited the suppression of CD4(+)CD25(-) Th cells by favoring their survival through the induction of Bcl-2 expression. At variance, suppression was not affected by addition of IL-13, although this cytokine shares with IL-4 a receptor chain. When naive CD4(+)CD25(-) Th cells were replaced by Th1 and Th2 cells, cell proliferation of both subsets was equally suppressed, but suppression was less pronounced compared with that of CD4(+)CD25(-) Th cells. IL-4 production by Th2 cells was also inhibited. These results indicate that although CD4(+)CD25(+) Treg cells inhibit IL-4 production, the addition of IL-4 counteracts CD4(+)CD25(+) Treg cell-mediated suppression by promoting CD4(+)CD25(-) Th cell survival and proliferation.  相似文献   

12.
CD4 CD25 调节性T细胞作为一种抑制性T细胞功能亚群,在维持机体的免疫自稳和免疫耐受方面发挥了关键作用。该作用的发挥与其外周细胞库的维持密切相关。新近的研究显示CD4 CD25 调节性T细胞主要通过两种机制来维持其外周细胞库,一些功能分子参与其中。  相似文献   

13.
调节性T细胞是一类具有免疫抑制作用,调节自身T细胞功能的T细胞亚群,与维持免疫耐受、抑制自身免疫性疾病有关,CD4+CD25+调节性T细胞是其重要组成部分.该文介绍CD4+CD25+调节性T细胞在癌症患者免疫系统中的失调现象、机制和以其为靶点的免疫治疗方式.  相似文献   

14.
Numerous reports have demonstrated that CD4(+)CD25(+) regulatory T cells (Tregs) from individuals with a range of human autoimmune diseases, including type 1 diabetes, are deficient in their ability to control autologous proinflammatory responses when compared with nondiseased, control individuals. Treg dysfunction could be a primary, causal event or may result from perturbations in the immune system during disease development. Polymorphisms in genes associated with Treg function, such as IL2RA, confer a higher risk of autoimmune disease. Although this suggests a primary role for defective Tregs in autoimmunity, a link between IL2RA gene polymorphisms and Treg function has not been examined. We addressed this by examining the impact of an IL2RA haplotype associated with type 1 diabetes on Treg fitness and suppressive function. Studies were conducted using healthy human subjects to avoid any confounding effects of disease. We demonstrated that the presence of an autoimmune disease-associated IL2RA haplotype correlates with diminished IL-2 responsiveness in Ag-experienced CD4(+) T cells, as measured by phosphorylation of STAT5a, and is associated with lower levels of FOXP3 expression by Tregs and a reduction in their ability to suppress proliferation of autologous effector T cells. These data offer a rationale that contributes to the molecular and cellular mechanisms through which polymorphisms in the IL-2RA gene affect immune regulation, and consequently upon susceptibility to autoimmune and inflammatory diseases.  相似文献   

15.
The survival of T cells at different stages of development is dependent on extrinsic signals. IL-7 is necessary for the development of memory T cells. IL-7 could induce and maintain the differentiation, survival, and proliferation of CD4+ memory T cells, and the roles of IL-2 and IL-15 in the generation of CD4+ memory T cells were still unclear. A CD4+ memory T cells in vitro generated system by adding IL-7. The phenotype of CD4+ memory T cells was identified by FACS. The cells proliferation was analyzed by CFSE staining. The involved signal pathways were analyzed by Western blot. We found that IL-2, not IL-15, could inhibit CD4+ memory T cells generation. Western blot showed that IL-7 up-regulated the P-STAT5A expression and down-regulated Bax expression, IL-2 reduced the effect of IL-7. Besides, IL-2-combined IL-7 up-regulated the P-AKT and Foxo3a expression a little. In conclusion, our data revealed the inhibitory role of IL-2 in CD4+ memory T cells generation and indicated that PI3K/AKT signal pathway was involved.  相似文献   

16.
宫颈癌患者外周血CD4+CD25+high调节性T细胞的表达及意义   总被引:1,自引:0,他引:1  
目的:探讨宫颈癌患者外周血中CD4~ CD25~( high)调节性T(regulator T cells,Tr)的表达及意义。方法:采用流式细胞术检测52例宫颈癌患者,35例健康女性外周血中CD4~ CD25~( high)Tr、细胞毒性T细胞(cytotoxic T lymphocytes,CTL)和NK细胞,采用ELISA检测血清中-干扰素(interferon,IFN-)的表达水平。结果:宫颈癌患者外周血CD4~ CD25~( high)Tr占CD4~ T淋巴细胞的百分比为(7.18±2.32)%,高于健康女性组(P<0.05);宫颈癌患者外周血CD4~ CD25~( high)Tr水平与CTL、NK细胞及IFN-水平呈负相关。结论:宫颈癌患者外周血中具免疫抑制活性的CD4~ CD25~( high)Tr水平较高,参与宫颈癌患者的肿瘤免疫抑制。  相似文献   

17.
CD4+CD25+调节性T细胞(Treg)是一种有免疫抑制功能的T淋巴细胞,其在炎症性肠病(IBD)中的功能机制已成为近年免疫学和临床研究的热点。目前,Treg细胞新的表型和作用机制逐渐被大量的实验和研究证实。本文就Treg在IBD发病过程中的作用机理及益生菌对Treg功能的影响做一综述。  相似文献   

18.
The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg.  相似文献   

19.
利用荧光抗体标记和流式细胞术检测喘可治对刀豆蛋白A(ConA)诱导的T细胞CD69和CD25表达的影响,研究喘可治是否具有促进CD4 CD25 调节性T细胞升高的作用.结果发现喘可治对ConA诱导的T细胞活化标志分子CD69的表达具有抑制作用,但对CD25的表达具有促进作用.说明喘可治对T细胞活化具有抑制作用,CD25表达的上调并不是由活化引起的,而很可能是CD4 CD25 Tr水平升高的标志.  相似文献   

20.
We have previously shown that mice lacking the IL-12-specific receptor subunit beta2 (IL-12Rbeta2) develop more severe experimental autoimmune encephalomyelitis than wild-type (WT) mice. The mechanism underlying this phenomenon is not known; nor is it known whether deficiency of IL-12Rbeta2 impacts other autoimmune disorders similarly. In the present study we demonstrate that IL-12Rbeta2(-/-) mice develop earlier onset and more severe disease in the streptozotocin-induced model of diabetes, indicating predisposition of IL-12Rbeta2-deficient mice to autoimmune diseases. T cells from IL-12Rbeta2(-/-) mice exhibited significantly higher proliferative responses upon TCR stimulation. The numbers of naturally occurring CD25(+)CD4(+) regulatory T cells (Tregs) in the thymus and spleen of IL-12Rbeta2(-/-) mice were comparable to those of WT mice. However, IL-12Rbeta2(-/-) mice exhibited a significantly reduced capacity to develop Tregs upon stimulation with TGF-beta, as shown by significantly lower numbers of CD25(+)CD4(+) T cells that expressed Foxp3. Functionally, CD25(+)CD4(+) Tregs derived from IL-12Rbeta2(-/-) mice were less efficient than those from WT mice in suppressing effector T cells. The role of IL-12Rbeta2 in the induction of Tregs was confirmed using small interfering RNA. These findings suggest that signaling via IL-12Rbeta2 regulates both the number and functional maturity of Treg cells, which indicates a novel mechanism underlying the regulation of autoimmune diseases by the IL-12 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号