首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Toll-like receptor (TLR) ligands are critical activators of innate immunity and are being developed as vaccine adjuvants. However, their utility in conjunction with viral vector-based vaccines remains unclear. In this study, we evaluated the impact of a variety of TLR ligands on antigen-specific CD8+ T lymphocyte responses elicited by a recombinant adenovirus serotype 26 (rAd26) vector expressing simian immunodeficiency virus Gag in mice. The TLR3 ligand poly(I:C) suppressed Gag-specific cellular immune responses, whereas the TLR4 ligands lipopolysaccharide and monophosphoryl lipid A substantially augmented the magnitude and functionality of these responses by a MyD88- and TRIF-dependent mechanism. These data demonstrate that TLR ligands can modulate the immunogenicity of viral vaccine vectors both positively and negatively. Moreover, these findings suggest the potential utility of TLR4 ligands as adjuvants for rAd vector-based vaccines.Toll-like receptors (TLRs) are critical sensors of infection with a fundamental role in the activation of innate immune responses and the subsequent modulation of pathogen-specific adaptive immunity (2). TLR ligands have therefore emerged as potential vaccine adjuvants, particularly in the context of peptide, protein, and DNA vaccines (17). In particular, TLR agonists are widely reported to modulate antibody and T helper lymphocyte responses, and in some cases CD8+ T lymphocyte responses, elicited by protein-based vaccines (5, 19, 33, 41). However, far less is known about the impact of TLR ligands on the immunogenicity of viral vector-based vaccines.Compared with DNA vaccines, viral vectors are typically more immunogenic, presumably as a result of the activation of innate immunity via multiple TLRs or other pattern recognition receptors (29). Viral vectors elicit robust T lymphocyte responses and thus are attractive vaccine candidates for pathogens such as human immunodeficiency virus type 1 (HIV-1) and malaria (10). Whether the addition of exogenous TLR agonists might further enhance the immunogenicity of viral vectors, however, remains unclear. The few studies that have explored the utility of TLR adjuvants with viral vectors have typically shown no or mild enhancement of antibody and T lymphocyte responses (7, 26). We therefore sought to determine systematically whether TLR ligands can modulate cellular immune responses elicited by a recombinant adenovirus serotype 26 (rAd26) vector in mice.C57BL/6 mice (n = 7 to 8/group) were immunized with a single injection of 3 × 108 viral particles (vp) rAd26-Gag alone or combined with various TLR ligands (1). Vectors were mixed with soluble TLR agonists 1 h prior to intramuscular (i.m.) injection into both quadriceps muscles. Cellular immune responses were assessed by Db/AL11 tetramer binding assays (3, 6), gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assays (6), and multiparameter intracellular cytokine staining (ICS) assays (14). As shown in Fig. Fig.11 A, immunization with rAd26-Gag plus either 20 μg Pam3CSK (TLR1/2 ligand) (25), 20 μg Pam2CSK (TLR2/6 ligand) (9, 20), 10 μg flagellin (TLR5 ligand) (5, 8), 100 μg CLO97 (TLR7 ligand) (41), or 40 μg CpG (TLR9 ligand) (40) (all obtained from InvivoGen, San Diego, CA) elicited AL11-specific tetramer-positive responses (3, 6) that were similar to those detected in the unadjuvanted groups.Open in a separate windowFIG. 1.Antigen-specific CD8+ T cell responses elicited by rAd26-Gag are modulated by soluble TLR ligands. (A) C57BL/6 mice (n = 7 to 8 mice/group) were immunized once with 3 × 108 vp rAd26-Gag alone or 3 × 108 vp rAd26-Gag combined with the following TLR ligands: 20 μg synthetic triacylated lipoprotein (Pam3CSK; TLR1/2 ligand), 20 μg synthetic diacylated lipoprotein (Pam2CSK; TLR 2/6 ligand), 100 μg poly(I:C) (TLR3 ligand), 10 μg LPS (TLR4 ligand), 10 μg flagellin (TLR5 ligand), 100 μg CLO97 (TLR7 ligand), or 40 μg unmethylated CpG-oligodeoxynucleotides (CpG; TLR9 ligand). Gag-specific cellular immune responses were assayed by Db/AL11 tetramer binding assays at multiple time points following injection. (B) At week 4 following immunization, functional immune responses from mice immunized with rAd26 vaccine alone or with 10 μg LPS or 100 μg poly(I:C) were assessed by IFN-γ ELISPOT assays in response to pooled Gag peptides, the CD8+ T lymphocyte epitopes AL11 and KV9, and the CD4+ T lymphocyte epitope DD13. (C) Assessment of the dose response of LPS (10 μg, 2 μg, 0.4 μg) and poly(I:C) (100 μg, 20 μg, 4 μg) with rAd26-Gag (n = 4 mice/group) by Db/AL11 tetramer binding assays. (D) Mice were immunized once i.m. with 3 × 108 vp rAd26-Gag alone, rAd26-Gag with 2 μg LPS, or rAd26-Gag with 20 μg poly(I:C) (n = 4 to 8 mice/group), and Gag-specific CD8+ T cell responses in splenocytes were assessed 4 weeks after vaccination by intracellular cytokine assays for IFN-γ, TNF-α, IL-2, and CD107. Responses to pooled Gag peptides are presented for each individual combination of functions and collated as the number of functions elaborated as a percent of total CD8+ T lymphocytes (insert; bar graph) and as the fraction of Gag-specific CD8+ T lymphocytes (insert; pie charts). Mean responses with standard errors are shown (*, P < 0.001; **, P < 0.05; two-tailed t test).The TLR3 ligand poly(I:C) (InvivoGen, San Diego, CA), however, markedly suppressed responses to the rAd26-Gag vaccine (Fig. (Fig.1A).1A). This finding contrasts with prior reports demonstrating its adjuvanticity for protein antigen vaccines (22, 34, 37). By day 28, mice that received the vaccine plus 100 μg poly(I:C) developed Gag-specific CD8+ T lymphocyte responses that were significantly lower (1.7%) than those of mice that received the vaccine alone (5.4%; P < 0.001; two-tailed t test). Similarly, IFN-γ ELISPOT responses in mice that received poly(I:C) were lower than those observed in the unadjuvanted group (Fig. (Fig.1B)1B) (6). In a dose response study (Fig. (Fig.1C),1C), 100-μg, 20-μg, and 4-μg doses of poly(I:C) all resulted in diminished tetramer-positive responses.In contrast, the TLR4 ligand lipopolysaccharide (LPS) (Ultrapure LPS from Escherichia coli 0111:B4; InvivoGen, San Diego, CA) substantially enhanced Gag-specific CD8+ T lymphocyte responses elicited by the rAd26-Gag vaccine (Fig. (Fig.1A).1A). At day 28, tetramer-positive responses in mice that received the vaccine plus 10 μg LPS (9.6%) were significantly higher than those in the unadjuvanted group (5.4%; P = 0.04). Moreover, IFN-γ ELISPOT responses (6, 21) to pooled Gag peptides, the CD8+ T lymphocyte epitopes AL11 and KV9, and the CD4+ T lymphocyte epitope DD13 were greater in mice that received the vaccine with LPS than in mice that received the vaccine alone at week 4 after immunization (P = 0.02) (Fig. (Fig.1B).1B). To further quantify this effect, mice were immunized once i.m. (n = 4 mice/group) with rAd26-Gag with various doses of LPS (10 μg, 2 μg, 0.4 μg). Tetramer-positive responses were enhanced by 10 μg and 2 μg LPS but not by 0.4 μg LPS (Fig. (Fig.1C),1C), indicating that this LPS effect was dose dependent. No overt clinical toxicities were observed by using these doses of LPS in mice.We next evaluated the functionality of CD8+ T lymphocyte responses by multiparameter ICS assays that assessed IFN-γ, tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2), and the cytotoxic degranulation marker CD107 expression at week 4 following immunization with rAd26-Gag alone, rAd26-Gag with 2 μg LPS, or rAd26-Gag with 20 μg poly(I:C) (n = 4 to 8 mice/group) (15). As shown in Fig. Fig.1D,1D, the addition of LPS significantly enhanced not only the overall magnitude of Gag-specific CD8+ T lymphocyte responses (P = 0.04) but also the fraction of Gag-specific CD8+ T lymphocytes that expressed two or more effector functions (P = 0.04). In particular, the LPS-adjuvanted group induced higher levels of single-function CD107+, 2-function TNF-α+ CD107+, as well as 3-function IFN-γ+ TNF-α+ CD107+ CD8+ T lymphocytes than mice that received rAd26-Gag alone. These data show that LPS enhanced both the magnitude and functionality of antigen-specific cellular responses elicited by rAd26-Gag. In contrast, the addition of poly(I:C) diminished both the overall magnitude of Gag-specific responses and the fraction of these responses that were multifunctional.We further characterized the opposing effects of poly(I:C) and LPS by administering the rAd26-Gag vaccine with both poly(I:C) and LPS. C57BL/6 mice (n = 4 mice/group) were immunized with a single injection of rAd26-Gag alone or with 10 μg LPS, 60 μg poly(I:C), or both TLR ligands. As shown in Fig. Fig.22 A, administration of both TLR ligands resulted in reduced Gag-specific responses, suggesting that the suppressive effect of poly(I:C) was dominant over the enhancing effect of LPS. To determine the durability of the effects of poly(I:C) and LPS, C57BL/6 mice were primed with rAd26-Gag alone or with 2 μg LPS or 20 μg poly(I:C) (n = 4 mice/group) and were boosted on day 35 with a single i.m. injection of the heterologous vector rAd5HVR48(1-7) also expressing simian immunodeficiency virus (SIV) Gag (32). As shown in Fig. Fig.2B,2B, the mice that received poly(I:C) with the priming immunization responded to the boosting immunization with Gag-specific responses that were comparable to those observed in the mice that received rAd26-Gag alone. In contrast, mice that received LPS with the priming immunization exhibited sustained enhanced Gag-specific tetramer and ELISPOT responses, demonstrating the proliferative potential of antigen-specific CD8+ T lymphocytes elicited by the LPS-adjuvanted rAd26-Gag vaccine.Open in a separate windowFIG. 2.Dominant suppressive effect of poly(I:C) over LPS with the rAd26-Gag vaccine. (A) Mice were immunized once i.m. with 3 × 108 vp rAd26-Gag alone or with 20 μg poly(I:C), 2 μg LPS, or both poly(I:C) and LPS (n = 4 mice/group). Gag-specific CD8+ T lymphocyte responses were assessed by Db/AL11 tetramer binding assays and IFN-γ ELISPOT assays 4 weeks after immunization. (B) Mice were primed once with 3 × 108 vp rAd26-Gag alone or with 2 μg LPS or 20 μg poly(I:C) and then boosted (↓) with 3 × 108 vp rAd5HVR48(1-7) at week 5. Gag-specific cellular immune responses were assessed by Db/AL11 tetramer binding assays and by IFN-γ ELISPOT responses at week 4 postboost. Mean responses with standard errors are shown.We next investigated whether the mechanism underlying the immunomodulatory effects of LPS and poly(I:C) involved the expected TLR signaling pathways. Although LPS and poly(I:C) are chiefly considered TLR ligands, poly(I:C) can also signal through the intracellular sensor MDA-5 (14), and both LPS and poly(I:C) may activate inflammasomes through Nalp3 (12, 28). To explore whether the effects of LPS and poly(I:C) involved TLR signaling, we utilized C57BL/6 mice lacking TRIF (Jackson Laboratory, Bar Harbor, ME), which is utilized by TLR3, or C57BL/6 mice lacking MyD88 (provided by S. Akira and B. Pulendran), which is utilized by the majority of TLRs. In particular, TLR4 signals through both TRIF and MyD88. Wild-type, MyD88−/−, and TRIF−/− mice (n = 4 mice/group) were immunized with rAd26-Gag vaccine alone or with 2 μg LPS or 20 μg poly(I:C). As shown in Fig. Fig.3,3, the adjuvant activity of LPS was abrogated in both MyD88−/− and TRIF−/− mice (Fig. 3A and B), suggesting that the adjuvanticity of the TLR4 ligand LPS was dependent on both MyD88 and TRIF, as expected. In contrast, the suppressive effect of poly(I:C) was observed in MyD88−/− mice but not in TRIF−/− mice (Fig. 3A and B), indicating that the suppressive effect of the TLR3 ligand poly(I:C) was dependent on TRIF, rather than MDA-5 or nonspecific effects (14, 39). These data confirm that the immunomodulatory effects of LPS and poly(I:C) were dependent on the expected TLR signaling pathways.Open in a separate windowFIG. 3.The immunomodulatory effects of poly(I:C) and LPS are TLR dependent. MyD88−/− and TRIF−/− mice (n = 4 mice/group) were immunized once i.m. with 3 × 108 vp rAd26-Gag alone or with 2 μg LPS or 20 μg poly(I:C). (A) Db/AL11 tetramer binding assays were performed at multiple time points following injection, and (B) IFN-γ ELISPOT responses were assessed 4 weeks after immunization. Mean responses with standard errors are shown.LPS is not a likely adjuvant for clinical development as a result of its toxicities, and alternative TLR4 ligands have been developed for potential clinical use. In particular, monophosphoryl lipid A (MPLA) is an LPS derivative that retains the immunologically active lipid A portion of the parent molecule (23, 27). The reduced toxicity of MPLA is attributed to the preferential recruitment of TRIF upon TLR4 activation, resulting in decreased induction of inflammatory cytokines (18). To determine if MPLA can similarly adjuvant cellular immune responses elicited by rAd26-Gag, C57BL/6 mice were immunized with 3 × 107, 3 × 108, or 3 × 109 vp rAd26-Gag alone or with 5 μg MPLA (derived from Salmonella enterica serovar Minnesota R595 LPS; InvivoGen, San Diego, CA) (n = 4 mice/group). This optimal dose of MPLA was selected by dose response studies (data not shown). As shown in Fig. Fig.44 A, Gag-specific IFN-γ ELISPOT responses to the lowest dose of vector were essentially undetectable in the unadjuvanted group, consistent with prior observations (1). In contrast, clear responses were observed in the mice that received 3 × 107 vp rAd26-Gag with MPLA (P < 0.01; two-tailed t test). Mice that received the 3 × 108 vp and 3 × 109 vp doses of rAd26-Gag with MPLA also exhibited higher Gag-specific cellular immune responses than the unadjuvanted groups (P < 0.01). Functionality of these Gag-specific CD8+ T lymphocyte responses, as measured by multiparameter ICS assays assessing IFN-γ, TNF-α, IL-2, and CD107 expression, was also greater in mice that received rAd26-Gag with MPLA compared with rAd26-Gag (P < 0.05 for the lowest dose group) (Fig. (Fig.4B).4B). Thus, the TLR4 ligand MPLA also augmented antigen-specific CD8+ T lymphocyte responses elicited by rAd26-Gag.Open in a separate windowFIG. 4.The TLR4 ligand MPLA augments the immunogenicity of rAd26-Gag. C57BL/6 mice (n = 4 mice/group) were immunized once i.m. with 3 × 107, 3 × 108, or 3 × 109 vp rAd26-Gag with or without 5 μg MPLA. Gag-specific cellular immune responses were assessed 4 weeks after immunization by IFN-γ ELISPOT responses (*, P < 0.01 for responses to pooled Gag peptides; two-tailed t test) (A) and by ICS for IFN-γ, TNF-α, IL-2, and CD107 (B). Responses to pooled Gag peptides in mice immunized with 3 × 107 vp rAd26-Gag with or without 5 μg MPLA are presented for each individual combination of functions and collated as the number of functions as a fraction of the total Gag-specific CD8+ T lymphocyte response (insert; pie charts) (**, P < 0.05). (C) Cytokine levels were measured in sera of mice 8 h after immunization with 3 × 108 vp rAd26-Gag alone or 3 × 108 vp rAd26-Gag with 5 μg MPLA or 2 μg LPS (n = 4 mice/group). Mean responses with standard errors are shown.To explore differences in acute inflammatory responses following MPLA and LPS administration, serum levels of IL-1α, IL-6, granulocyte colony-stimulating factor (G-CSF), and IP-10 were assessed 8 h after vaccination in duplicate using multiplexed fluorescent bead-based immunoassays (Millipore, Billerica, MA) and analyzed on the Luminex 100 IS (Luminex, Austin, TX). As shown in Fig. Fig.4C,4C, mice that received MPLA had lower levels of the MyD88-associated acute proinflammatory cytokines IL-1α and IL-6 than mice that received LPS, as expected. Levels of IP-10 and G-CSF, which are associated with TRIF activation (18), were comparable (Fig. (Fig.4B).4B). These data confirm that MPLA resulted in lower levels of systemic inflammatory cytokine secretion than LPS.Optimization of the immunogenicity of viral vectors is an important research priority. However, there have been few reports addressing the potential use of adjuvants together with viral vectors. Combining alum with rAd35 elicited improved antibody responses to a malaria antigen (24), and the addition of TLR9 agonists (CpGs) resulted in paradoxically diminished immune responses elicited by a rAd5 vector but improved protection against a cancer antigen (13). Most recently, Appledorn et al. reported enhanced antigen-specific T lymphocyte responses with the coadministration of a rAd vector engineered to express a novel TLR5 agonist (4). Our study extends these findings and represents the first systematic investigation of the capacity of a panel of soluble TLR ligands to modulate rAd-elicited CD8+ T lymphocyte responses.The TLR agonists that modulated vaccine-elicited immune responses in this study included poly(I:C), LPS, and MPLA. These ligands have all been reported to augment CD8+ T lymphocyte responses elicited by peptide or protein vaccines (11, 22, 31, 33, 42), presumably through enhanced cross-presentation (34, 35). TLR signaling has been shown to be important for virus-elicited CD8+ T lymphocyte responses (38), often through activation of multiple TLRs or other pattern recognition receptors (30). The activation of TLR4 by LPS or MPLA with a viral vector most likely provides an additive or synergistic signal, probably resulting in enhanced APC maturation in the appropriate cytokine milieu. Moreover, immunization of the viral vector and LPS at different sites abrogated the observed adjuvanticity (data not shown), indicating that TLR4 adjuvanticity involves a local mechanism of action. However, the mechanism by which a TLR3 agonist suppresses immunogenicity of a viral vector remains unclear. It is possible that the high levels of type I interferon elicited by poly(I:C) (data not shown) may limit expression from the rAd26 vector. Alternatively, poly(I:C) has been reported to elicit IL-10 secretion, and this suppressive cytokine may limit CD8+ T cell proliferation (22, 36). The unexpected suppressive activity of poly(I:C) illustrates the inherent complexity of viral vectors compared to protein-based vaccines (16, 37).Our data demonstrate that antigen-specific CD8+ T lymphocyte responses elicited by a rAd26-Gag vaccine vector can be both positively and negatively modulated by soluble TLR ligands, and the mechanism underlying these observations involves the expected TRIF and MyD88 signaling pathways. In particular, the TLR4 ligands LPS and MPLA substantially augmented the magnitude and functionality of antigen-specific cellular immune responses elicited by this vaccine vector. These findings suggest that TLR ligands, particularly MPLA, deserve further exploration as potential adjuvants to improve the immunogenicity and protective efficacy of viral vaccine vectors.  相似文献   

6.
Following treatment of hepatitis B virus (HBV) monoinfection, HBV-specific T-cell responses increase significantly; however, little is known about the recovery of HBV-specific T-cell responses following HBV-active highly active antiretroviral therapy (HAART) in HIV-HBV coinfected patients. HIV-HBV coinfected patients who were treatment naïve and initiating HBV-active HAART were recruited as part of a prospective cohort study in Thailand and followed for 48 weeks (n = 24). Production of gamma interferon (IFN-γ) and tumor necrosis factor α (TNF-α) in both HBV- and HIV-specific CD8+ T cells was quantified using intracellular cytokine staining on whole blood. Following HBV-active HAART, the median (interquartile range) log decline from week 0 to week 48 for HBV DNA was 5.8 log (range, 3.4 to 6.7) IU/ml, and for HIV RNA it was 3.1 (range, 2.9 to 3.5) log copies/ml (P < 0.001 for both). The frequency of HIV Gag-specific CD8+ T-cell responses significantly decreased (IFN-γ, P < 0.001; TNF-α, P = 0.05). In contrast, there was no significant change in the frequency (IFN-γ, P = 0.21; TNF-α, P = 0.61; and IFN-γ and TNF-α, P = 0.11) or magnitude (IFN-γ, P = 0.13; TNF-α, P = 0.13; and IFN-γ and TNF-α, P = 0.13) of HBV-specific CD8+ T-cell responses over 48 weeks of HBV-active HAART. Of the 14 individuals who were HBV e antigen (HBeAg) positive, 5/14 (36%) lost HBeAg during the 48 weeks of follow-up. HBV-specific CD8+ T cells were detected in 4/5 (80%) of patients prior to HBeAg loss. Results from this study show no sustained change in the HBV-specific CD8+ T-cell response following HBV-active HAART. These findings may have implications for the duration of treatment of HBV in HIV-HBV coinfected patients, particularly in HBeAg-positive disease.Individuals infected with human immunodeficiency virus (HIV) and hepatitis B virus (HBV) are at increased risk of liver disease progression and liver-related mortality (35). Despite the introduction of effective highly active antiretroviral therapy (HAART), liver disease remains a major cause of non-AIDS-related deaths in HIV-1-infected patients (31). Current guidelines recommend the early consideration of HBV-active HAART in the majority of coinfected individuals (28), and treatment of both HBV and HIV is generally lifelong. This is in contrast to HBV-monoinfected patients, where HBV treatment ceases following production of antibody to HBV e antigen (HBeAg) or HBV surface antigen (HBsAg) (23). HBeAg and HBsAg seroconversions are considered important endpoints of treatment as they are associated with HBV DNA clearance, normalization of alanine aminotransferase (ALT), and a reduction in the risk of liver disease (12).Little is known about the immune events precipitating HBeAg or HBsAg seroconversion. However, a reduction in antigen burden following anti-HBV treatment may reduce T-cell tolerance and exhaustion, allowing for a more efficient HBV-specific T-cell and B-cell immune response against either HBeAg and/or HBsAg (11, 13, 21). Circulating HBV-specific CD4+ and CD8+ T cells are rarely detected in untreated chronic HBV infection (5, 24). Following treatment of HBV monoinfection with nucleos(t)ide analogues such as lamivudine (LMV), there is an increase in functional HBV-specific CD4+ and CD8+ T cells both in the peripheral blood (5, 18) and within the liver (32). However, recovery of HBV-specific T cells appears to be transient and has been shown to decline following long-term therapy (5, 14, 20).We have previously shown that the HBV-specific T-cell response is impaired in HIV-HBV coinfection (7, 9). In one small observational study (n = 5), HBV-active HAART was associated with the recovery of CD8+ HBV-specific T cells (19); however, in this study, two patients had received prior HAART, and the HBV-specific T-cell responses were examined only during the first 24 weeks of treatment (19). In addition, HBeAg status was not defined, and HBV-specific T-cell responses were measured only by IFN-γ production following stimulation with HLA-A2-restricted epitopes (19).In the present study, we used an overlapping peptide library covering the complete HBV genome to assess change in HBV-specific CD8+ T cells following the introduction of HBV-active HAART in treatment-naïve HIV-HBV-coinfected patients in Thailand. Overall, we show that there was no sustained change in the magnitude, frequency, or quality of HBV-specific T-cell responses following initiation of effective HBV-active HAART.  相似文献   

7.

Background

Cellular immunity is the main defense mechanism in paracoccidioidomycosis (PCM), the most important systemic mycosis in Latin America. Th1 immunity and IFN-γ activated macrophages are fundamental to immunoprotection that is antagonized by IL-10, an anti-inflammatory cytokine. Both in human and experimental PCM, several evidences indicate that the suppressive effect of IL-10 causes detrimental effects to infected hosts. Because direct studies have not been performed, this study was aimed to characterize the function of IL-10 in pulmonary PCM.

Methodology/Principal Findings

Wild type (WT) and IL-10−/− C57BL/6 mice were used to characterize the role of IL-10 in the innate and adaptive immunity against Paracoccidioides brasiliensis (Pb) infection. We verified that Pb-infected peritoneal macrophages from IL-10−/− mice presented higher phagocytic and fungicidal activities than WT macrophages, and these activities were associated with elevated production of IFN-γ, TNF-α, nitric oxide (NO) and MCP-1. For in vivo studies, IL-10−/− and WT mice were i.t. infected with 1×106 Pb yeasts and studied at several post-infection periods. Compared to WT mice, IL-10−/− mice showed increased resistance to P. brasiliensis infection as determined by the progressive control of pulmonary fungal loads and total clearance of fungal cells from dissemination organs. This behavior was accompanied by enhanced delayed-type hypersensitivity reactions, precocious humoral immunity and controlled tissue pathology resulting in increased survival times. In addition, IL-10−/− mice developed precocious T cell immunity mediated by increased numbers of lung infiltrating effector/memory CD4+ and CD8+ T cells. The inflammatory reactions and the production of Th1/Th2/Th17 cytokines were reduced at late phases of infection, paralleling the regressive infection of IL-10−/− mice.

Conclusions/Significance

Our work demonstrates for the first time that IL-10 plays a detrimental effect to pulmonary PCM due to its suppressive effect on the innate and adaptive immunity resulting in progressive infection and precocious mortality of infected hosts.  相似文献   

8.
9.
10.
Protein kinase B (PKB)/Akt is considered to be a key target downstream of insulin receptor substrate 2 (IRS2) in the regulation of β-cell mass. However, while deficiency of IRS2 in mice results in diabetes with insulin resistance and severe failure of β-cell mass and function, only loss of the PKBβ isoform leads to a mild metabolic phenotype with insulin resistance. Other isoforms were reported not to be required for metabolic regulation. To clarify the roles of the three PKB isoforms in the regulation of islet mass and glucose homeostasis, we assessed the metabolic and pancreatic phenotypes of Pkbα, Pkbβ, and Pkbγ-deficient mice. Our study uncovered a novel role for PKBα in the regulation of glucose homeostasis, whereas it confirmed that Pkbβ−/ mice are insulin resistant with compensatory increase of islet mass. Pkbα−/ mice displayed an opposite phenotype with improved insulin sensitivity, lower blood glucose, and higher serum glucagon concentrations. Pkbγ−/ mice did not show metabolic abnormalities. Additionally, our signaling analyses revealed that PKBα, but not PKBβ or PKBγ, is specifically activated by overexpression of IRS2 in β-cells and is required for IRS2 action in the islets.Adaptation of pancreatic islet mass and function relative to metabolic demand maintains glucose homeostasis and may prevent the development of type 2 diabetes. β-Cell proliferation, apoptosis, growth, and function are tightly regulated by various extracellular factors and intracellular signaling pathways (23, 24, 34). In β-cells, insulin receptor substrate 2 (IRS2) controls maintenance and expansion of islet mass (29, 31, 42). In fact, IRS2-deficient mice are insulin resistant, show β-cell failure and hyperglycemia, and finally develop diabetes (26, 42). In contrast, deficiency of IRS1 only causes insulin resistance without the development of diabetes due to a compensatory increase in functional β-cell mass (1, 38). These observations indicated that IRS2, but not IRS1, is necessary for maintenance and compensatory increase of β-cell mass. Furthermore, experiments with isolated islets revealed that overexpression of IRS2, but not of IRS1, can increase β-cell proliferation and protect cells against high-glucose-induced apoptosis (29). Downstream of IRS2, phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB) signaling is considered to be the critical pathway for the regulation of β-cell mass and function (12, 15, 16, 27). The serine-threonine kinase PKB, also known as Akt, is required for various cellular processes, from the regulation of cell cycle, survival, and growth to glucose and protein metabolism. In mammals, three PKB/Akt isoforms have been characterized and named PKBα/Akt1, PKBβ/Akt2, and PKBγ/Akt3. Although encoded by different genes on different chromosomes, the three isoforms display high homology at the protein level with 80 to 85% identical residues and the same structural organization (43). However, they differ in terms of tissue-specific expression. PKBα is expressed in most tissues and PKBβ is highly expressed in insulin-responsive tissues, whereas PKBγ expression is prominent in the brain and testes (17). All three isoforms are expressed in β-cells (30, 37). The roles of PKB in different tissues have been studied in transgenic-mouse models. While Pkbα−/ and Pkbγ−/ mice show impaired fetal growth and brain development, respectively, glucose homeostasis is unaffected in both models (9, 11, 14, 39, 46). In contrast, Pkbβ−/ mice are insulin resistant and mildly glucose intolerant and have less adipose tissue. Depending on the strain and gender, these mice show either late loss of β-cells followed by the development of diabetes and mild growth deficiency or compensatory increase of β-cell mass without age-dependent progression into overt hyperglycemia (10, 17). These studies suggested that PKBβ is the only isoform playing a role in the regulation of energy homeostasis. On the other hand, constitutive activation of PKBα in β-cells is sufficient to increase growth and proliferation (5, 40), and in INS1 cells it prevents free fatty acid (FFA)-induced apoptosis (44). Furthermore, antagonizing total PKB activity in β-cells by ectopic expression of a kinase-dead mutant causes defects in insulin secretion (4), suggesting that in islets PKB is required mainly for normal function of the β-cells. Although these data support the notion that PKB must play a role in pancreatic β-cells, they are not in line with the stronger metabolic phenotype displayed by IRS2-deficient mice. In fact, PKBα and PKBγ appear not to be required to regulate glucose homeostasis (9, 11, 39), and in the case of Pkbβ−/ mice, even though glucose homeostasis is impaired due to strong peripheral insulin resistance, the overall metabolic phenotype is far less severe than in Irs2−/ mice (10), indicating that the capacity for β-cell compensation is retained in the absence of PKBβ.The aim of this study was to clarify the role of PKB in the regulation of islet mass and to define the relevance of PKB isoforms for IRS2 action in β-cells. Although it had been shown that PKBα is dispensable for the regulation of glucose homeostasis (9, 11), we found lower blood glucose concentrations in Pkbα−/ mice. Based on this observation, we assessed in more detail the metabolic and the endocrine pancreatic phenotypes of Pkbα-, Pkbβ-, or Pkbγ-deficient mice. In addition, glucose uptake into fat cells, insulin secretion, and islet cell proliferation were investigated. Contrary to previous assumptions implying that PKBβ is the only (or at least the main) isoform playing a role in the regulation of glucose metabolism, we present evidence that both PKBα and PKBβ isoforms are required in the periphery for regulation of glucose homeostasis. While we confirmed that Pkbβ−/ mice are insulin resistant and glucose intolerant with compensatory increase of β-cell mass, Pkbα−/ mice showed lower blood glucose levels, were more insulin sensitive, and revealed higher serum glucagon concentrations accompanied by a mild increase in α-cell mass and proliferation. Moreover, our in vitro experiments showed that PKBα is specifically activated by IRS2 in β-cells and that its activation is required for IRS2-induced proliferation in islets.  相似文献   

11.

Background

Mice lacking the type I interferon receptor (IFNAR−/− mice) reproduce relevant aspects of Crimean-Congo hemorrhagic fever (CCHF) in humans, including liver damage. We aimed at characterizing the liver pathology in CCHF virus-infected IFNAR−/− mice by immunohistochemistry and employed the model to evaluate the antiviral efficacy of ribavirin, arbidol, and T-705 against CCHF virus.

Methodology/Principal Findings

CCHF virus-infected IFNAR−/− mice died 2–6 days post infection with elevated aminotransferase levels and high virus titers in blood and organs. Main pathological alteration was acute hepatitis with extensive bridging necrosis, reactive hepatocyte proliferation, and mild to moderate inflammatory response with monocyte/macrophage activation. Virus-infected and apoptotic hepatocytes clustered in the necrotic areas. Ribavirin, arbidol, and T-705 suppressed virus replication in vitro by ≥3 log units (IC50 0.6–2.8 µg/ml; IC90 1.2–4.7 µg/ml). Ribavirin [100 mg/(kg×d)] did not increase the survival rate of IFNAR−/− mice, but prolonged the time to death (p<0.001) and reduced the aminotransferase levels and the virus titers. Arbidol [150 mg/(kg×d)] had no efficacy in vivo. Animals treated with T-705 at 1 h [15, 30, and 300 mg/(kg×d)] or up to 2 days [300 mg/(kg×d)] post infection survived, showed no signs of disease, and had no virus in blood and organs. Co-administration of ribavirin and T-705 yielded beneficial rather than adverse effects.

Conclusions/Significance

Activated hepatic macrophages and monocyte-derived cells may play a role in the proinflammatory cytokine response in CCHF. Clustering of infected hepatocytes in necrotic areas without marked inflammation suggests viral cytopathic effects. T-705 is highly potent against CCHF virus in vitro and in vivo. Its in vivo efficacy exceeds that of the current standard drug for treatment of CCHF, ribavirin.  相似文献   

12.
β-Carotene biochemistry is a fundamental process in mammalian biology. Aberrations either through malnutrition or potentially through genetic variation may lead to vitamin A deficiency, which is a substantial public health burden. In addition, understanding the genetic regulation of this process may enable bovine improvement. While many bovine QTL have been reported, few of the causative genes and mutations have been identified. We discovered a QTL for milk β-carotene and subsequently identified a premature stop codon in bovine β-carotene oxygenase 2 (BCO2), which also affects serum β-carotene content. The BCO2 enzyme is thereby identified as a key regulator of β-carotene metabolism.THE metabolism of β-carotene to form vitamin A is nutritionally important, and vitamin A deficiency remains a significant public health burden. Genetic variation may underlie individual differences in β-carotene metabolism and contribute to the etiology of vitamin A deficiency. Within an agricultural species, genetic variation provides opportunity for production improvements, disease resistance, and product specialization options. We have previously shown that natural genetic variation can be successfully used to inform bovine breeding decisions (Grisart et al. 2002; Blott et al. 2003). Despite numerous reports of quantitative trait loci (QTL), few causative mutations have been identified. We discovered a QTL for milk β-carotene content and report here the identification of a mutation in the bovine β-carotene oxygenase 2 (BCO2) gene responsible for this QTL. The mutation, which results in a premature stop codon, supports a key role for BCO2 in β-carotene metabolism.The QTL trial consisted of a Holstein-Friesian × Jersey cross in an F2 design and a half-sibling family structure (Spelman et al. 2001). Six F1 sires and 850 F2 female progeny formed the trial herd. To construct the genetic map, the pedigree (including the F1 sires, F1 dams, F2 daughters, and selected F0 grandsires: n = 1679) was genotyped, initially with 237 microsatellite markers, and subsequently, with 6634 SNP markers (Affymetrix Bovine 10K SNP GeneChip). A wide range of phenotypic measures relating to growth and development, health and disease, milk composition, fertility, and metabolism were scored on the F2 animals from birth to 6 years of age.To facilitate the discovery of QTL and genes regulating β-carotene metabolism, milk concentration of β-carotene was measured during week 6 of the animals'' second lactation (n = 651). Using regression methodology in a half-sib model (Haley et al. 1994; Baret et al. 1998), a QTL on bovine chromosome 15 (P < 0.0001; Figure 1A) was discovered. The β-carotene QTL effect on chromosome 15 was also significant (P < 0.0001) at two additional time points, in months 4 and 7 of lactation. Three of the six F1 sire families segregated for the QTL, suggesting that these three F1 sires would be heterozygous for the QTL allele (“Q”). To further define the most likely region within the QTL that would harbor the causative mutation, we undertook association mapping, using the 225 SNP markers that formed the chromosome 15 genetic map (Figure 1A). One SNP (“PAR351319”) was more closely associated with the β-carotene phenotype than any other marker (P = 2.522E−18). This SNP was located beneath the QTL peak. Further, the SNP was heterozygous in the three F1 sires that segregated for the QTL, and homozygous in the remaining three sires. On this basis, we hypothesized that the milk β-carotene phenotype would differ between animals on the basis of the genotype of SNP PAR351319.Open in a separate windowFigure 1.—Discovery of BCO2 mutation affecting milk β-carotene concentration. (A) The β-carotene QTL on bovine chromosome 15 (P < 0.0001) is shown by the red line. The maximum F-value at 21 cM was 7.15. The 95% confidence interval is shown by the shaded box. The association of each marker with milk β-carotene is shown by the blue dots, and the association of the BCO2 genotype is shown by the green diamond. A total of 233 informative markers (8 microsatellite markers and 225 single nucleotide polymorphisms) were included on the genetic map for BTA15. QTL detection was conducted using regression methodology in a line of descent model (Haley et al. 1994) and a half-sib model (Baret et al. 1998). Threshold levels were determined at the chromosomewide level using permutation testing (Churchill and Doerge 1998) and confidence intervals estimated using bootstrapping (Visscher et al. 1996). (B) The haplotypes of 10 representative animals for “QQ” and “qq” are shown for the SNP markers encompassing the SNP (“PAR351319”) most closely associated with the milk β-carotene phenotype. Light and dark gray boxes represent homozygous SNPs, while white boxes represent heterozygous SNPs. The genes present within the defined region are also shown. (C) The mutation in the bovine BCO2 gene is shown. The structure of the BCO2 gene is indicated by the horizontal bar, with vertical bars representing exons 1–12. The A > G mutation in exon 3 (red) causes a premature termination codon at amino acid position 80. (D) The mean concentration of β-carotene in the milk fat of “QQ,” “Qq,” and “qq” cows is shown. β-Carotene was measured by absorbance at 450 nm as previously described (Winkelman et al. 1999). Data are means ± SEM. The statistical significance was determined using ANOVA (***P < 0.0001; n = 651).We then made the following assumptions: that the effect of the QTL was additive, that the Q allele was present in the dam population, allowing the occurrence of homozygous (“QQ”) offspring, and that the QTL was caused by a single mutation, acting with a dominant effect on the milk β-carotene phenotype. Haplotypes encompassing the PAR351319 SNP were determined in the F2 offspring. A comparison of the phenotypic effect of homozygous Q, heterozygous and homozygous q individuals revealed that indeed, animals with the “QQ” genotype had a higher concentration of milk β-carotene than animals with the “qq” genotype (Figure 1D). We predicted that the region of homozygosity was likely to contain the causative gene and mutation. The extent of this region and the candidate genes contained within it are shown in Figure 1B. A total of 10 genes with known function, including BCO2, were located within the region. This information, combined with knowledge of the role BCO2 plays in β-carotene metabolism in other species (Kiefer et al. 2001), made BCO2 a good positional candidate for the QTL. We therefore sequenced the entire coding region (12 exons, NC_007313.3) of the BCO2 gene in each of the six F1 sires. An A > G mutation, which was heterozygous in the three F1 sires that segregated for the QTL, was discovered in exon three, 240 bp from the translation initiation site (Figure 1C). The three remaining sires were homozygous for the G allele, which encodes the 530-amino-acid BCO2 protein (NP_001101987). The A allele creates a premature stop codon resulting in a truncated protein of 79 amino acids. To determine whether this mutation was associated with the QTL, the remainder of the pedigree was genotyped. The BCO2 genotype was significantly associated with the milk β-carotene phenotype (P = 8.195E−29) The AA genotype (referred to as BCO2−/−) was present in 3.4% (n = 28) of the F2 population. The AG and GG genotypes (subsequently referred to as BCO2−/+ and BCO2+/+, respectively) were present in 32.8% (n = 269) and 63.8% (n = 523), respectively, of the F2 population.The effect of the premature stop codon on milk β-carotene content was striking. BCO2−/− cows produced milk with 78 and 55% more β-carotene than homozygous (GG) and heterozygous (AG) wild-type animals, respectively (P < 0.0001; Figure 2A). Consequently, the yellow color of the milk fat varied greatly (Figure 2B). The genotype effect on milk β-carotene content was similar at the other two time points measured during lactation (78 and 68% more β-carotene in milk from BCO2−/− cows compared to BCO2+/+ cows; data not shown).Open in a separate windowFigure 2.—Effect of BCO2 genotype on milk β-carotene content. (A) The mean concentration of β-carotene in the milk fat of BCO2−/−, BCO2−/+, and BCO2+/+ cows is shown. β-Carotene was measured by absorbance at 450 nm as previously described (Winkelman et al. 1999). Data are means ± SEM. The statistical significance was determined using ANOVA (***P < 0.0001; n = 651). (B) The effect of the BCO2 genotype on milk fat color is illustrated.No adverse developmental or health affects as a result of the A allele were observed at any stage throughout the lifespan of the animals. The BCO2−/− cows were fertile and milk yield was normal throughout lactation. Interestingly, quantitative real-time PCR showed fourfold lower levels of the BCO2 mRNA in liver tissue from BCO2−/− cows (data not shown).β-Carotene and vitamin A (retinol) concentrations were also measured in serum, liver, and adipose tissue samples, and vitamin A concentration was measured in milk samples from 14 F2 cows of each genotype. Serum β-carotene concentration was higher in BCO2−/− cows compared to the heterozygous and homozygous wild-type cows (P = 0.003; Figure 3A). Thus, the effect of the mutation on β-carotene concentration was similar for both milk and serum, showing that this effect was not confined to the mammary gland. Vitamin A concentration was higher in serum from BCO2−/− cows (P = 0.001; Figure 3B); however, the concentration did not differ in milk (13.1 μg/g fat vs. 14.1 μg/g fat for BCO2−/− and BCO2+/+ cows, respectively; P > 0.1). Liver β-carotene concentration did not differ between genotype groups (Figure 3C), but liver vitamin A was lower in BCO2−/− cows compared to BCO2+/+ cows (P < 0.03; Figure 3D). β-Carotene and vitamin A concentration did not differ between the genotype groups in adipose tissue (data not shown), suggesting tissue-specific effects of the BCO2 enzyme.Open in a separate windowFigure 3.—Effect of the BCO2 genotypes on concentration of β-carotene (A and C), and retinol (B and D), in serum (A and B), and liver (C and D). Subcutaneous adipose tissue biopsies (∼500 mg tissue), liver biopsies (∼100 mg tissue), and serum samples (10 ml) were taken from a subset of 42 cows (14 animals each BCO2−/−, BCO2−/+, and BCO2+/+ genotypes). β-Carotene and retinol measurements were determined using HPLC with commercial standards, on the basis of a published method (Hulshof et al. 2006). Data shown are means ± SEM. Significant differences are indicated by asterisks (*P < 0.05; **P < 0.01; ANOVA, n = 14 per genotype).While previous studies have shown a key role for β-carotene 15, 15′ monooxygenase (BCMO1) in catalyzing the symmetrical cleavage of β-carotene to vitamin A (von Lintig and Vogt 2000; von Lintig et al. 2001; Hessel et al. 2007) similar evidence for the role of the BCO2 enzyme in β-carotene metabolism is lacking. The physiological relevance of BCO2 has therefore been a topic of debate (Wolf 1995; Lakshman 2004; Wyss 2004). BCO2 mRNA and protein have been detected in several human tissues (Lindqvist et al. 2005), and the in vitro cleavage of β-carotene to vitamin A has been demonstrated (Kiefer et al. 2001; Hu et al. 2006). Our results provide in vivo evidence for BCO2-mediated conversion of β-carotene to vitamin A. BCO2−/− cows had more β-carotene in serum and milk and less vitamin A in liver, the main storage site for this vitamin.Our results show that a simple genetic test will allow the selection of cows for milk β-carotene content. Thus, milk fat color may be increased or decreased for specific industrial applications. Market preference for milk fat color varies across the world. Further, β-carotene enriched dairy foods may assuage vitamin A deficiency. Milk may be an ideal food for delivery of β-carotene, which is fat soluble and most efficiently absorbed in the presence of a fat component (Ribaya-Mercado 2002).In conclusion, we have discovered a naturally occurring premature stop codon in the bovine BCO2 gene strongly suggesting a key role of BCO2 in β-carotene metabolism. This discovery has industrial applications in the selection of cows producing milks with β-carotene content optimized for specific dairy products or to address a widespread dietary deficiency. More speculatively, it would be interesting to investigate possible effects of BCO2 variation in humans on the etiology of vitamin A deficiency.  相似文献   

13.
Interleukin-2 (IL-2) has been implicated as being necessary for the optimal formation of primary CD8+ T cell responses against various pathogens. Here we have examined the role that IL-2 signaling plays in several aspects of a CD8+ T cell response against murine gammaherpesvirus 68 (MHV-68). Exposure to MHV-68 causes a persistent infection, along with infectious mononucleosis, providing a model for studying these processes in mice. Our study indicates that CD25 is necessary for optimal expansion of the antigen-specific CD8+ T cell response but not for the long-term memory response. Contrastingly, IL-2 signaling through CD25 is absolutely required for CD8+ T cell mononucleosis.Members of the gammaherpesvirus family are associated with significant diseases, such as nasopharyngeal carcinoma, lymphoid malignancies, and infectious mononucleosis (16). Murine gammaherpesvirus 68 (MHV-68) is a γ2-herpesvirus related to the human pathogens Epstein-Barr virus (EBV) and Kaposi''s sarcoma virus (19, 21). Intranasal (i.n.) infection of mice with MHV-68 results in acute infection of the lung epithelium, which is eventually controlled; however, the virus also establishes a latent infection in B cells, dendritic cells, and macrophages that is maintained throughout the life of the host (8, 9). Infection with MHV-68 generates a broad array of antigen-specific CD8+ T cells that can control the virus without eliminating persistent infection (5, 12, 13). Additionally, CD4+ T cells and neutralizing antibodies are thought to be critical for the prevention of virus reactivation (3, 6).A major complication of EBV infection is infectious mononucleosis (16), which occurs when infection is delayed until puberty. Signs of disease include dramatic lymph node enlargement and the presence of large numbers of activated CD8+ T cells in the peripheral blood. Similarly to EBV infection, MHV-68 induces a polyclonal activation of B cells upon establishment of latency. Concurrently, a CD8+ T cell-dominated lymphocytosis of the peripheral blood occurs, as seen with EBV. However, there are distinct differences between the two types of infectious mononucleosis. CD8+ T cell lymphocytosis seen with EBV consists of a broad array of T cell receptor specificities, a large proportion of which are specific for EBV epitopes. In contrast, MHV-68-induced mononucleosis is dominated by oligoclonal Vβ4+ CD8+ T cells that are not reactive to MHV-68 epitopes. With MHV-68, the expansion of this population is dramatic, with levels reaching upwards of 60% of the peripheral blood CD8+ T cell population (20). This occurs in different mouse strains, across at least five different major histocompatibility complex (MHC) class I haplotypes. However, it is important to note that infection of wood mice (Apodemus sylvaticus) does not induce splenomegaly, as seen with laboratory strains of mice, indicating a potential lack of Vβ4 expansion that may be species related (14). Interestingly, evidence suggests that Vβ4+ CD8+ T cell expansion does not require classical MHC class Ia antigen presentation (4). Recent studies instead implicate a secreted viral protein, M1, capable of stimulating the Vβ4+ T cell population in a novel manner, and the authors propose a role for Vβ4+ T cells in control of MHV-68 infection (7).We and others have recently shown that IL-2 signaling during the early stages of a response to acute viral and bacterial pathogens is required for optimal expansion and differentiation of CD8+ T cells (15, 17, 18). However, reports with other viruses have shown IL-2-independent primary CD8+ T cell responses (1, 22). Therefore, we wished to determine whether IL-2 signals are necessary for the expansion, maintenance, and/or recall of CD8+ T cell responses during murine gammaherpesvirus infection.We generated chimeric mice through lethal irradiation of C57BL/6 mice followed by adoptive transfer of mixed bone marrow from C57BL/6 wild-type (WT) and CD25−/− donors, as previously described (17). Following previous described protocols, mice were given bone marrow in a 2:1 ratio of CD25−/−/WT to generate equally proportioned congenic populations in recipient mice (see Fig. S1 in the supplemental material) (1, 17). The resultant mice contained CD8+ T cells of both WT and CD25−/− origin, which could be distinguished by congenic markers. Chimeric mice were infected intranasally with 400 PFU of MHV-68, and the kinetics of the CD8+ T cell response were followed by antibody and tetramer staining of peripheral blood for CD8+ T cells specific for the epitopes ORF6487 (p56) and ORF61524 (p79), as previously described (13). While antigen-specific CD25−/− CD8+ T cells were initially able to proliferate in response to infection, the peak response was significantly lower than that of the wild-type cells (Fig. (Fig.11 A and B). This indicates that while CD25 is dispensable for early activation of CD8+ T cells, IL-2 signaling is required for full expansion of the antigen-specific response to MHV-68. Despite this deficit in the acute antiviral response, the resultant memory populations were not statistically different between the groups (Fig. 1A and B). In our previous report, CD25−/− CD8+ T cells were unable to fully differentiate into short-lived effector cells (SLECs), defined as KLRG1high CD127low (17). To determine if MHV-68-specific responses were also unable to fully differentiate, we infected chimeric mice and stained p79+ CD8+ T cells for the cell surface markers KLRG1 and CD127. At the peak of the response (14 days postinfection [p.i.]), p79+ WT cells had differentiated into SLEC (KLRG1high CD127low), memory precursor (MPEC) (KLRG1low CD127high), and doubly positive populations. However, the p79+ CD25−/− cells failed to form the SLEC population and instead had a corresponding increase in the MPEC population, indicating that CD25 is necessary for full effector differentiation of gammaherpesvirus-specific CD8+ T cell responses (Fig. 1C and D).Open in a separate windowFIG. 1.IL-2 signals are necessary for the optimal expansion of MHV-68-specific CD8+ T cells. WT/CD25−/− chimeric mice were infected with MHV-68 intranasally and bled at set time points. The antigen-specific responses against two dominant epitopes, p79 (A) and p56 (B), were determined via tetramer staining of peripheral blood. p79-specific CD8+ T cells from the WT and CD25−/− populations were stained at the peak of the response (day 14 p.i.) for KLRG1 and CD127 to determine their ability to differentiate into short-lived and memory precursor effector cells (C and D). *, P < 0.05; **, P < 0.01; ***, P < 0.001. Error bars represent standard deviations from the means. Four mice were used per group, and data are representative of at least two experiments.To determine whether antigen-specific CD25−/− CD8+ T cells were capable of optimally responding to a secondary challenge, we infected chimeric mice with MHV-68 and waited 60 days before challenging with recombinant vaccinia virus (rVV) expressing the ORF61524 epitope (2 × 106 PFU, intraperitoneal). It is necessary to use a heterologous virus to induce a recall CD8+ T cell response since MHV-68 generates a robust neutralizing antibody response, preventing secondary infection. Previous studies with rVV indicate that the recall response of MHV-68-specific CD8+ T cells is antigen dependent, since administration of rVV expressing an irrelevant epitope had no effect upon the MHV-68-specific populations (2). WT and CD25−/− cells were able to respond to the secondary challenge with similar kinetics (Fig. (Fig.22 A and B), indicating that MHV-68 memory CD8+ T cells are capable of a generating a recall response in the absence of IL-2 signaling. These data, together with our previous report (17), show that the dependence on CD25 for formation of the SLEC population is conserved between both persistent and acute virus infections.Open in a separate windowFIG. 2.CD25−/− CD8+ T cells can respond to secondary challenge. WT/CD25−/− chimeric mice were infected with MHV-68 i.n. After 60 days, the percentage of peripheral blood CD8+ T cells specific for p79 was determined. Mice were then challenged with rVV p79, and the p79+ CD8+ population was determined 5 days postchallenge (A). The numbers in the box represent the averages ± standard deviations. The average fold increase was calculated to determine the ability of WT and CD25−/− CD8+ T cells to respond to a secondary challenge (B). Error bars represent standard deviations from the means. Four mice were used per group, and data are representative of at least two experiments.WT CD8+ T cells underwent a dramatic expansion between days 15 and 21 p.i. (Fig. (Fig.3A),3A), consistent with infectious mononucleosis (10). Interestingly, we did not observe a similar expansion of CD25−/− CD8+ T cells, indicating a role for IL-2 signaling in the expansion of CD8+ T cells during mononucleosis (Fig. (Fig.3A).3A). Since mononucleosis is dominated by Vβ4+ CD8+ T cells, we analyzed these T cells from both naive and infected mice (17 days p.i.) for expression of CD25 by flow cytometry. While Vβ4+ CD8+ T cells from the spleen and peripheral blood of naive mice did not express detectable levels of CD25, mice infected with MHV-68 expressed intermediate levels of CD25 during the time period when dramatic expansion of Vβ4+ T cells occurs (Fig. 3B and C). Consistent with a role for IL-2 signaling in Vβ4 expansion, we observed a severe deficit in expansion in the CD25−/− population of chimeric mice, since the percentage of WT Vβ4+ cells increased dramatically between days 14 and 36 p.i., accompanied by only a small expansion of the CD25−/− Vβ4+ population over the same period (Fig. (Fig.44 A and B).Open in a separate windowFIG. 3.Vβ4+ CD8+ T cells express CD25 upon infection with MHV-68. WT/CD25−/− chimeric mice were infected with MHV-68 i.n., and the percentage of peripheral blood cells that were CD8+ was determined over time for each congenic population (A). Vβ4+ CD8+ T cells from naive and MHV-68-infected mice (day 17 p.i.) were analyzed for expression of CD25 (B and C). Isotype control, filled histogram; naive mice, dashed line; infected mice, solid line (**, P < 0.01). Error bars represent standard deviations from the means. Four mice were used per group, and data are representative of at least two experiments.Open in a separate windowFIG. 4.CD8+ T cell-based infectious mononucleosis does not occur in the absence of IL-2 signaling in MHV-68-infected mice. WT/CD25−/− chimeric mice were infected with MHV-68 i.n., and the percentage of Vβ4+ CD8+ T cells was determined over time for each congenic population. Representative plots from day 36 p.i. (A) or the averages over time (B) are shown. WT and CD25−/− CD8+ T cells from chimeric mice were analyzed for expression of CD62L over time. Representative plots from day 24 p.i. (C) or the averages over time (D) are shown. *, P < 0.05; **, P < 0.01). Error bars represent standard deviations from the means. Four mice were used per group, and data are representative of at least two experiments.During infectious mononucleosis, CD8+ T cells are in a highly activated state and thus express low levels of CD62L (20). Therefore, we analyzed CD8+ T cells from chimeric mice for expression of CD62L. After MHV-68 infection, the majority of WT CD8+ T cells in the peripheral blood were CD62Llow, as previously reported (Fig. 4C and D) (20). Interestingly, CD25−/− CD8+ T cells failed to develop this dominant CD62Llow population, indicating that CD25 is necessary for the activation of the CD8+ T cell compartment in addition to cell expansion during mononucleosis (Fig. 4C and D). When we analyzed the Vβ4+ CD8+ T cell compartment, we observed that WT cells downregulated expression of CD62L. While Vβ4+ cells from the CD25−/− compartment also decreased expression of CD62L, they did so to a lesser extent both as a percentage and on a per-cell basis (see Fig. S2 in the supplemental material).In these studies, we have shown that signaling through CD25 is necessary for the generation of an optimal primary CD8+ T cell response against a gammaherpesvirus, since virus-specific CD8+ T cells were unable to expand as robustly as WT cells and did not fully differentiate into short-lived effector cells. These observations are consistent with previous results from our lab and findings of others using a variety of acute infection models (17, 18). However, not all persistent infections appear to require CD25, since the m45-specific response to murine cytomegalovirus (MCMV) infection occurs normally in the absence of IL-2 signals (1). What allows for some responses to be independent of IL-2 remains unknown. Potential explanations could involve differences in tropism, the route of infection, or the amount of proinflammatory cytokines induced by each infection. Despite the dependence on CD25 for the short-term effector response, the memory CD8+ T cell response remained intact in the absence of IL-2 signaling. In contrast, Vβ4 expansion and mononucleosis never attained normal levels. Unlike the antigen-specific response, which relies upon peptide/MHC interactions for induction, mononucleosis does not rely upon conventional antigen presentation (4). Instead, the M1 protein of MHV-68, expressed during the establishment and expansion of latency in the spleen, appears to drive Vβ4 expansion (7). Interestingly, our evidence shows that both antigen-dependent and -independent CD8+ T cell expansion require CD25. Antigen-specific T cells also undergo an apoptotic contraction phase, followed by a lower frequency of cells surviving as relatively quiescent memory cells. In contrast, during mononucleosis caused by MHV-68, CD8+ T cells remain in an activated state and do not undergo a marked contraction, providing a potential explanation as to why the WT and CD25−/− Vβ4 populations continue to differ in both number and phenotype later in the response.Earlier studies have also identified CD4+ T cells as being critical for the development of MHV-68-induced infectious mononucleosis (11, 20). We have previously shown that CD4+ T cell help was critical for robust expression of CD25 on activated antigen-specific CD8+ T cells. Interestingly, when we measured CD25 expression on Vβ4+ cells from mice lacking CD4+ T cells, we saw a moderate decrease in the level of CD25 expressed (data not shown), indicating one potential reason why CD4-deficient mice do not experience infectious mononucleosis. However, it is likely that other factors involving CD4+ T cells and activation of B cells are also involved (10).In conclusion, the significance of these studies is twofold. First, they shed light on the requirements for MHV-68-induced mononucleosis. Second, our data illustrate that CD25 is required for both antigen-specific and non-antigen-specific activation of CD8+ T cell responses, while being dispensable for memory cell formation. This knowledge may be useful in developing new T cell-based immune therapies to enhance control of persistent gammaherpesvirus infections.   相似文献   

14.
Virus-infected cells secrete a broad range of interferons (IFN) which confer resistance to yet uninfected cells by triggering the synthesis of antiviral factors. The relative contributions of the various IFN subtypes to innate immunity against virus infections remain elusive. IFN-α, IFN-β, and other type I IFN molecules signal through a common, universally expressed cell surface receptor, whereas type III IFN (IFN-λ) uses a distinct cell-type-specific receptor complex for signaling. Using mice lacking functional receptors for type I IFN, type III IFN, or both, we found that IFN-λ plays an important role in the defense against several human pathogens that infect the respiratory tract, such as influenza A virus, influenza B virus, respiratory syncytial virus, human metapneumovirus, and severe acute respiratory syndrome (SARS) coronavirus. These viruses were more pathogenic and replicated to higher titers in the lungs of mice lacking both IFN receptors than in mice with single IFN receptor defects. In contrast, Lassa fever virus, which infects via the respiratory tract but primarily replicates in the liver, was not influenced by the IFN-λ receptor defect. Careful analysis revealed that expression of functional IFN-λ receptor complexes in the lung and intestinal tract is restricted to epithelial cells and a few other, undefined cell types. Interestingly, we found that SARS coronavirus was present in feces from infected mice lacking receptors for both type I and type III IFN but not in those from mice lacking single receptors, supporting the view that IFN-λ contributes to the control of viral infections in epithelial cells of both respiratory and gastrointestinal tracts.The interferon (IFN) system represents a major element of the innate immune response against viral infections (10, 13, 14). Virus-induced IFN is a complex mixture of biologically active molecules, which includes type I and type III IFN. Type I IFN consists of 14 different IFN-α subtypes in the mouse as well as IFN-β, IFN-κ, IFN-ɛ, and limitin, which all signal through the same universally expressed cell surface receptor complex (IFNAR) (30). Type III IFN includes IFN-λ1, IFN-λ2, and IFN-λ3 (21, 28), of which only the latter two are encoded by genes that are expressed in the mouse (22). Type III IFN uses a distinct receptor complex (IL28R) for signaling (21, 28), which appears to be expressed on only a few cell types, including epithelial cells (29). Binding of type I IFN and type III IFN to their cognate receptor complexes triggers signaling cascades that result in the activation of a large number of genes, many of which encode antiviral proteins (10, 32). Type I IFN and type III IFN trigger highly similar gene expression profiles in responsive cells, suggesting that both IFN types might serve similar functions. However, it has to date been largely unclear to which extent IFN-λ might contribute to innate immunity.Using knockout mouse strains that lack receptors for type I IFN (IFNAR10/0), type III IFN (IL28Rα0/0), or both (IFNAR10/0IL28Rα0/0), we have recently shown that IFN-λ contributes to resistance against influenza A virus (FLUAV) (26). Here, we used the same mouse strains to investigate the relative contribution of IFN-λ in resistance against additional viral pathogens that infect the respiratory and gastrointestinal tract and to visualize IFN-λ-responsive cells. We found that the double-knockout mice showed enhanced susceptibility to various viruses that primarily replicate in lung epithelial cells. Our analysis further revealed that epithelial cells of both lung and gastrointestinal tracts can strongly respond to IFN-λ and that IFN-λ inhibited the replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in both lung and gastrointestinal tracts.  相似文献   

15.

Background

Interferon-γ receptor 1 (IFN-γR1) deficiency is a life-threatening inherited disorder, conferring predisposition to mycobacterial diseases. Haematopoietic stem cell transplantation (HSCT) is the only curative treatment available, but is hampered by a very high rate of graft rejection, even with intra-familial HLA-identical transplants. This high rejection rate is not seen in any other congenital disorders and remains unexplained. We studied the underlying mechanism in a mouse model of HSCT for IFN-γR1 deficiency.

Methods and Findings

We demonstrated that HSCT with cells from a syngenic C57BL/6 Ifngr1 +/+ donor engrafted well and restored anti-mycobacterial immunity in naive, non-infected C57BL/6 Ifngr1 −/− recipients. However, Ifngr1 −/− mice previously infected with Mycobacterium bovis bacillus Calmette-Guérin (BCG) rejected HSCT. Like infected IFN-γR1-deficient humans, infected Ifngr1 −/− mice displayed very high serum IFN-γ levels before HSCT. The administration of a recombinant IFN-γ-expressing AAV vector to Ifngr1 −/− naive recipients also resulted in HSCT graft rejection. Transplantation was successful in Ifngr1 −/− × Ifng −/− double-mutant mice, even after BCG infection. Finally, efficient antibody-mediated IFN-γ depletion in infected Ifngr1 −/− mice in vivo allowed subsequent engraftment.

Conclusions

High serum IFN-γ concentration is both necessary and sufficient for graft rejection in IFN-γR1-deficient mice, inhibiting the development of heterologous, IFN-γR1-expressing, haematopoietic cell lineages. These results confirm that IFN-γ is an anti-haematopoietic cytokine in vivo. They also pave the way for HSCT management in IFN-γR1-deficient patients through IFN-γ depletion from the blood. They further raise the possibility that depleting IFN-γ may improve engraftment in other settings, such as HSCT from a haplo-identical or unrelated donor.  相似文献   

16.
Sigma-1 receptor (σ1R) has been reported to be decreased in nigrostriatal motor system of Parkinson''s disease patients. Using heterozygous and homozygous σ1R knockout (σ1R+/− and σ1R−/−) mice, we investigated the influence of σ1R deficiency on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-impaired nigrostriatal motor system. The injection of MPTP for 5 weeks in wild-type mice (MPTP-WT mice), but not in σ1R+/− or σ1R−/− mice (MPTP-σ1R+/− or MPTP-σ1R−/− mice), caused motor deficits and ~40% death of dopaminergic neurons in substantia nigra pars compacta with an elevation of N-methyl-d-aspartate receptor (NMDAr) NR2B phosphorylation. The σ1R antagonist NE100 or the NR2B inhibitor Ro25-6981 could alleviate the motor deficits and the death of dopaminergic neurons in MPTP-WT mice. By contrast, MPTP-σ1R+/− mice treated with the σ1R agonist PRE084 or MPTP-σ1R−/− mice treated with the NMDAr agonist NMDA appeared to have similar motor deficits and loss of dopaminergic neurons as MPTP-WT mice. The pharmacological or genetic inactivation of σ1R suppressed the expression of dopamine transporter (DAT) in substantia nigra, which was corrected by NMDA. The activation of σ1R by PRE084 enhanced the DAT expression in WT mice or σ1R+/− mice. By contrast, the level of vesicular monoamine transporter 2 (VMAT2) in σ1R+/− mice or σ1R−/− mice had no difference from WT mice. Interestingly, MPTP-WT mice showed the reduction in the levels of DAT and VMAT2, but MPTP-σ1R−/− mice did not. The inactivation of σ1R by NE100 could prevent the reduction of VMAT2 in MPTP-WT mice. In addition, the activation of microglia cells in substantia nigra was equally enhanced in MPTP-WT mice and MPTP-σ1R−/− mice. The number of activated astrocytes in MPTP-σ1R−/− mice was less than that in MPTP-WT mice. The findings indicate that the σ1R deficiency through suppressing NMDAr function and DAT expression can reduce MPTP-induced death of dopaminergic neurons and parkinsonism.Parkinson''s disease (PD) is a neurodegenerative disorder characterized by motor symptoms, including bradykinesia and tremor, and a progressive loss of dopaminergic neurons in substantia nigra pars compacta (SNpc).1, 2 Sigma-1 receptor (σ1R), previously named the opioid receptor sigma-1, is found primarily in motoneurons localized in the brainstem and spinal cord.3 The σ1R is expressed in dopaminergic neurons and astrocytes.4 The σ1R agonist PRE084 has been reported to exert neurorestorative effects on 6-hydroxydopamine (6-OHDA)-induced parkinsonism.4 Using positron emission tomography, the σ1R-binding sites are found to be reduced in the brains of early-phase PD patients.5 However, the influence of σ1R deficiency on the pathogenesis of PD has not yet been reported.Dopamine toxicity is involved in the etiology of PD.6 The σ1R-binding sites on dopaminergic nerve terminals are involved in increasing dopamine release by enhancing N-methyl-d-aspartate receptors (NMDAr).7 The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) metabolized to 1-methyl-4-phenylpyridinium in glial cells selectively impairs dopaminergic neurons in SNpc through disrupting respiratory enzymes and causing oxidative damage.8 The dopamine transporter (DAT), a high-affinity transmembrane protein, is responsible for dopamine reuptake from the synaptic cleft and the transportation of 1-methyl-4-phenylpyridinium into dopaminergic nerve terminals.9 The σ1R is co-expressed with DAT in dopaminergic neurons.4 Furthermore, the low density of DAT has been confirmed in the brains of PD patients.5The activation of σ1R enhances the Ca2+ influx across NMDAr through increasing the phosphorylation of NR2B or the trafficking NMDAr to the plasma membrane.10, 11 The NMDAr NR2B inhibitor can attenuate MPTP- or 6-OHDA-induced parkinsonian symptoms and neurodegeneration.12 The σ1R deficiency has been demonstrated to reduce Aβ-induced neuronal cell death through suppressing NR2B phosphorylation.13 The inflammation is a predominant aspect of PD, manifested by glial activation with the expression of pro-inflammatory mediators.14 Sustained neuro-inflammation can exacerbate the degeneration of dopaminergic neurons.15 The blockade of σ1R has been reported to inhibit methamphetamine-induced astrogliosis.16 Moreover, the 6-OHDA-induced spontaneous rotations or decline of dopaminergic fibers in σ1R knockout mice seem to be less than those in wild-type (WT) mice.4 Paquette et al. reported that the blockade of σ1R could attenuate abnormal involuntary movements induced by 6-OHDA.17In this study, we employed heterozygous and homozygous σ1R knockout (σ1R+/− and σ1R−/−) mice to investigate the influence of σ1R deficiency on MPTP-induced parkinsonism and death of dopaminergic neurons, and the underlying molecular mechanisms. Using the experimental PD models of MPTP-treated σ1R+/− mice and σ1R−/− mice, the present study provides in vivo evidence that the σ1R deficiency through suppressing NMDAr function and DAT expression can attenuate MPTP-induced dopaminergic neurodegeneration and parkinsonism.  相似文献   

17.
Herpes simplex virus type 2 (HSV-2) induces acute local infection followed by latent infection in the nervous system and often leads to the development of lethal encephalitis in immunocompromised hosts. The mechanisms of immune protection against lethal HSV-2 infection, however, have not been clarified. In this study, we examined the roles of Fas-Fas ligand (FasL) signaling in lethal infection with HSV-2 by using mice with mutated Fas (lpr) or FasL (gld) in C57BL/6 background. Both lpr and gld mice exhibited higher mortality than wild-type (WT) C57BL/6 mice after infection with virulent HSV-2 strain 186 and showed significantly increased viral titers in the spinal cord compared with WT mice 9 days after infection, just before the mice started to die. There were no differences in the numbers of CD4+ and CD8+ T cells infiltrated in the spinal cord or in the levels of HSV-2-specific gamma interferon produced by those cells in a comparison of lpr and WT mice 9 days after infection. Adoptive transfer studies demonstrated that CD4+ T cells from WT mice protected gld mice from lethal infection by HSV-2. Furthermore, CD4+ T cells infiltrated in the spinal cord of HSV-2-infected WT mice expressed functional FasL that induced apoptosis of Fas-expressing target cells in vitro. These results suggest that FasL-mediated cytotoxic activity of CD4+ T cells plays an important role in host defense against lethal infection with HSV-2.Fas-Fas ligand (FasL) signaling-induced apoptotic cell death has pleiotropic roles in T-cell-mediated host defense mechanisms. First, Fas and FasL are expressed on activated T cells and thereby limit their number by inducing suicide or fratricide. It is generally accepted that Fas-mediated activation-induced cell death plays a predominant role during chronic infection, whereas starvation-induced cell death mediated by the proapoptotic BH3-only subgroup of the Bcl-2 protein family is the main mechanism for T-cell death during termination of immune responses in acute infection (30). Fas-FasL signaling might also play a role in T-cell development, as suggested by an accumulation of T-cell receptor αβ-positive (TCR αβ+) CD4 CD8 T cells expressing B220 in lymphoid organs of mice with mutated Fas (lpr) or FasL (gld) although the origin and functions of such double-negative T cells are still a matter of debate (21). Lastly, Fas-FasL interaction can be directly involved in host defense by inducing apoptosis of infected cells to facilitate pathogen clearance (23). Therefore, the roles of Fas-FasL signaling in immune responses for host defense might vary depending on the pathogen.Herpes simplex virus type 2 (HSV-2) is an alphaherpesvirus that causes genital herpes, the most common viral sexually transmitted disease (29). After initial infection in the vaginal epithelium, HSV-2 invades local nerve termini, travels via retrograde axonal transport to neuronal cell bodies in sensory ganglia, and establishes latent infection (13). However, especially in neonates and immunocompromised hosts, HSV-2 can cause lethal central nervous system (CNS) infection, which indicates the importance of immune systems in limiting the pathogenicity of HSV-2. Immune responses against HSV-2 have been studied in various murine models using different strains of virus and routes of inoculation, with or without vaccination with an attenuated strain of HSV-2. In such vaccination models, CD4+ T cells producing gamma interferon (IFN-γ) predominantly conferred protection against challenge with a virulent strain of HSV-2 (11, 19), whereas various subsets of lymphocytes, including NK cells, NK T cells, and TCR γδ T cells as well as CD4+ T cells were reported to be involved in host defense against primary infection with virulent HSV-2 (3, 15, 24), in which IFN-γ also played an important role (9). Fas-FasL signaling was shown to be dispensable for the clearance of an attenuated strain of HSV-2, which lacks thymidine kinase and causes only transient mild vaginal pathologies but not neurologic diseases (6, 16). Similarly Fas-mediated apoptosis was not involved in the vaccination effect of the attenuated HSV-2 (11). However, the roles of Fas-FasL signaling in host defense against a virulent strain of HSV-2 have not been clarified.In this study, we examined the roles of Fas-FasL signaling in a murine model of HSV-2 infection by using a highly virulent HSV-2 strain 186 with lpr and gld mice. We found that FasL-Fas signaling plays an important role in host defense against lethal HSV-2 infection.  相似文献   

18.
Intracranial (i.c.) infection of mice with lymphocytic choriomeningitis virus (LCMV) results in anorexic weight loss, mediated by T cells and gamma interferon (IFN-γ). Here, we assessed the role of CD4+ T cells and IFN-γ on immune cell recruitment and proinflammatory cytokine/chemokine production in the central nervous system (CNS) after i.c. LCMV infection. We found that T-cell-depleted mice had decreased recruitment of hematopoietic cells to the CNS and diminished levels of IFN-γ, CCL2 (MCP-1), CCL3 (MIP-1α), and CCL5 (RANTES) in the cerebrospinal fluid (CSF). Mice deficient in IFN-γ had decreased CSF levels of CCL3, CCL5, and CXCL10 (IP-10), and decreased activation of both resident CNS and infiltrating antigen-presenting cells (APCs). The effects of IFN-γ signaling on macrophage lineage cells was assessed using transgenic mice, called “macrophages insensitive to interferon gamma” (MIIG) mice, that express a dominant-negative IFN-γ receptor under the control of the CD68 promoter. MIIG mice had decreased levels of CCL2, CCL3, CCL5, and CXCL10 compared to controls despite having normal numbers of LCMV-specific CD4+ T cells in the CNS. MIIG mice also had decreased recruitment of infiltrating macrophages and decreased activation of both resident CNS and infiltrating APCs. Finally, MIIG mice were significantly protected from LCMV-induced anorexia and weight loss. Thus, these data suggest that CD4+ T-cell production of IFN-γ promotes signaling in macrophage lineage cells, which control (i) the production of proinflammatory cytokines and chemokines, (ii) the recruitment of macrophages to the CNS, (iii) the activation of resident CNS and infiltrating APC populations, and (iv) anorexic weight loss.Immune cell recruitment to and infiltration of the central nervous system (CNS) is central to the pathology of a variety of inflammatory neurological diseases, including infectious meningoencephalitis, multiple sclerosis, and cerebral ischemia (59, 60). Chemokines have been shown to be highly upregulated in both human diseases and animal models of neuroinflammation and are thought to be important mediators of immune cell entry into the CNS (59, 60). For example, during experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS), the chemokines CCL2 (monocyte chemoattractant protein 1 [MCP-1α]), CCL3 (macrophage inflammatory protein 1α [MIP-1α]), CCL5 (regulated upon activation, T-cell expressed and secreted [RANTES]), and CXCL10 (gamma interferon [IFN-γ]-inducible protein 10 [IP-10]) are produced by either resident CNS cells or infiltrating cells (27) and serve to amplify the ongoing inflammatory response (25, 28). However, in some EAE studies, neither CCL3 nor CXCL10 were required for disease (72, 73). During CNS viral infection, CXCL10 and CCL5 are highly produced in several models (2, 41, 48, 82). In addition, mice deficient in CCR5, which binds (among others) CCL3 and CCL5, do not display impaired CNS inflammation after certain viral infections (13). Thus, the role of chemokines in CNS inflammation is likely complex and dissimilar between autoimmune and viral infection models.IFN-γ is present in the CNS during autoimmunity and infection (7, 54, 69). Several studies suggest that IFN-γ can be a potent inducer of CNS chemokine expression. Adenoviral expression of IFN-γ in the CNS strongly induced CCL5 and CXCL10 mRNA and protein, and this induction was dependent on the presence of the IFN-γ receptor (50). In EAE and Toxoplasma infection, mice deficient in IFN-γ or the IFN-γ receptor demonstrated reduced expression of several chemokines, including CCL2, CCL3, CCL5, and CXCL10 (26, 69). However, given the near-ubiquitous expression of the IFN-γ receptor (44), the mechanisms by which IFN-γ regulates CNS chemokine production remain to be elucidated.We studied neuroinflammation and immune-mediated disease using a well-studied mouse model of infection with lymphocytic choriomeningitis virus (LCMV). Intracranial (i.c.) injection of mice with LCMV results in seizures and death 6 to 8 days after inoculation. The onset of symptoms is associated with a massive influx of mononuclear cells into the cerebrospinal fluid (CSF), meninges, choroid plexus, and ependymal membranes (6, 8, 18), as well as the presence of proinflammatory cytokines (7, 38). The immune response is critical for disease, since infection of irradiated or T-cell-depleted mice leads to persistent infection with very high levels of virus in multiple tissues without the development of lethal meningitis (18, 34, 64). i.c. LCMV infection of β2-microglobulin-deficient mice (β2m−/− mice) also results in meningitis and production of proinflammatory cytokines and chemokines; however, meningitis occurs with a later onset and lower severity compared to wild-type mice (17, 24, 53, 57). Interestingly, i.c. LCMV infection of these mice also causes severe anorexia and weight loss (33, 38, 46, 52, 57) that is mediated by major histocompatibility complex (MHC) class II-restricted, CD4+ T cells (17, 46, 53, 57). Anorexia and weight loss are also observed in wild-type mice, but they succumb to lethal meningitis shortly thereafter (33), making study of this particular aspect of disease difficult. LCMV-induced weight loss, similar to what we have observed in β2m−/− mice also occurs in perforin-deficient mice, which possess CD8+ T cells (37). Although some reports have observed weight loss after peripheral LCMV infection (11, 45), we note that these studies used high doses of the clone 13 strain of LCMV, in contrast to our studies which have used the Armstrong strain of LCMV and orders of magnitude less virus (33, 38, 46, 52, 57). Although we cannot exclude a contribution of peripheral cells to weight loss in our i.c. Armstrong infection model, we previously showed that this weight loss does not occur with peripheral infection with LCMV Armstrong (33, 38), indicating that interactions between the CNS and the immune system are contribute substantially to disease.During LCMV infection, there is biphasic production of IFN-γ: a small, early peak of IFN-γ (most likely produced by NK or NKT cells), followed by T-cell-mediated production of IFN-γ (23, 75). Further, both CD4+ T cells and CD8+ T cells produce large amounts of IFN-γ after LCMV infection and T-cell production of IFN-γ is critical for LCMV-induced weight loss (35). Chemokines, especially CXCL10, CCL5, and CCL2, and their receptors, are upregulated in the brain after i.c. LCMV infection (2, 13). Brain chemokine mRNA expression after i.c. LCMV infection is reduced in IFN-γ-deficient mice and relatively absent in athymic mice (2). However, the mechanism(s) by which T cells and IFN-γ mediate the effects on CNS chemokine expression, cellular infiltration into the CNS, and LCMV-induced anorexic weight loss remain unclear.In the present study, we focused on two major questions. The first question concerned the role of IFN-γ on immune cell recruitment to and chemokine/cytokine production within the CNS? We found that macrophages and myeloid dendritic cells (DCs) require IFN-γ for their accumulation within the CNS. Second, since macrophages and myeloid DCs are the predominant cellular infiltrate, we sought to determine whether IFN-γ signaling on these cells was direct with regard to their recruitment and to chemokine/cytokine production. We found that IFN-γ signaling in macrophage lineage cells contributes significantly to their recruitment, to chemokine production in the CNS, and to anorexic weight loss. Together, these data suggest that much of the proinflammatory effects of IFN-γ in the CNS are mediated by the effects of IFN-γ on CD68-bearing cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号