共查询到20条相似文献,搜索用时 0 毫秒
1.
Rebecca K. Swartz Elisa C. Rodriguez Megan C. King 《Molecular biology of the cell》2014,25(16):2461-2471
Unless efficiently and faithfully repaired, DNA double-strand breaks (DSBs) cause genome instability. We implicate a Schizosaccharomyces pombe nuclear envelope–spanning linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of the Sad1/Unc84 protein Sad1 and Klarsicht/Anc1/SYNE1 homology protein Kms1, in the repair of DSBs. An induced DSB associates with Sad1 and Kms1 in S/G2 phases of the cell cycle, connecting the DSB to cytoplasmic microtubules. DSB resection to generate single-stranded DNA and the ATR kinase drive the formation of Sad1 foci in response to DNA damage. Depolymerization of microtubules or loss of Kms1 leads to an increase in the number and size of DSB-induced Sad1 foci. Further, Kms1 and the cytoplasmic microtubule regulator Mto1 promote the repair of an induced DSB by gene conversion, a type of homology-directed repair. kms1 genetically interacts with a number of genes involved in homology-directed repair; these same gene products appear to attenuate the formation or promote resolution of DSB-induced Sad1 foci. We suggest that the connection of DSBs with the cytoskeleton through the LINC complex may serve as an input to repair mechanism choice and efficiency. 相似文献
2.
Seiichi Uchimura Takashi Fujii Hiroko Takazaki Rie Ayukawa Yosuke Nishikawa Itsushi Minoura You Hachikubo Genji Kurisu Kazuo Sutoh Takahide Kon Keiichi Namba Etsuko Muto 《The Journal of cell biology》2015,208(2):211-222
Dynein is a motor protein that moves on microtubules (MTs) using the energy of adenosine triphosphate (ATP) hydrolysis. To understand its motility mechanism, it is crucial to know how the signal of MT binding is transmitted to the ATPase domain to enhance ATP hydrolysis. However, the molecular basis of signal transmission at the dynein–MT interface remains unclear. Scanning mutagenesis of tubulin identified two residues in α-tubulin, R403 and E416, that are critical for ATPase activation and directional movement of dynein. Electron cryomicroscopy and biochemical analyses revealed that these residues form salt bridges with the residues in the dynein MT-binding domain (MTBD) that work in concert to induce registry change in the stalk coiled coil and activate the ATPase. The R403-E3390 salt bridge functions as a switch for this mechanism because of its reversed charge relative to other residues at the interface. This study unveils the structural basis for coupling between MT binding and ATPase activation and implicates the MTBD in the control of directional movement. 相似文献
3.
Extrinsic signals received by a cell can induce remodeling of the cytoskeleton, but the downstream effects of cytoskeletal changes on gene expression have not been well studied. Here, we show that during telophase of an asymmetric division in C. elegans, extrinsic Wnt signaling modulates spindle structures through APR-1/APC, which in turn promotes asymmetrical nuclear localization of WRM-1/β-catenin and POP-1/TCF. APR-1 that localized asymmetrically along the cortex established asymmetric distribution of astral microtubules, with more microtubules found on the anterior side. Perturbation of the Wnt signaling pathway altered this microtubule asymmetry and led to changes in nuclear WRM-1 asymmetry, gene expression, and cell-fate determination. Direct manipulation of spindle asymmetry by laser irradiation altered the asymmetric distribution of nuclear WRM-1. Moreover, laser manipulation of the spindles rescued defects in nuclear POP-1 asymmetry in wnt mutants. Our results reveal a mechanism in which the nuclear localization of proteins is regulated through the modulation of microtubules. 相似文献
4.
5.
Winnok H. De Vos Frederik Houben Ron A. Hoebe Raoul Hennekam Baziel van Engelen Erik M.M. Manders Frans C.S. Ramaekers Jos L.V. Broers Patrick Van Oostveldt 《Biochimica et Biophysica Acta (BBA)/General Subjects》2010
Background
The nuclear lamina provides structural support to the nucleus and has a central role in defining nuclear organization. Defects in its filamentous constituents, the lamins, lead to a class of diseases collectively referred to as laminopathies. On the cellular level, lamin mutations affect the physical integrity of nuclei and nucleo-cytoskeletal interactions, resulting in increased susceptibility to mechanical stress and altered gene expression.Methods
In this study we quantitatively compared nuclear deformation and chromatin mobility in fibroblasts from a homozygous nonsense LMNA mutation patient and a Hutchinson–Gilford progeria syndrome patient with wild type dermal fibroblasts, based on the visualization of mCitrine labeled telomere-binding protein TRF2 with light-economical imaging techniques and cytometric analyses.Results
Without application of external forces, we found that the absence of functional lamin A/C leads to increased nuclear plasticity on the hour and minute time scale but also to increased intranuclear mobility down to the second time scale. In contrast, progeria cells show overall reduced nuclear dynamics. Experimental manipulation (farnesyltransferase inhibition or lamin A/C silencing) confirmed that these changes in mobility are caused by abnormal or reduced lamin A/C expression.Conclusions
These observations demonstrate that A-type lamins affect both nuclear membrane and telomere dynamics.General significance
Because of the pivotal role of dynamics in nuclear function, these differences likely contribute to or represent novel mechanisms in laminopathy development. 相似文献6.
Azizova TV Muirhead CR Moseeva MB Grigoryeva ES Sumina MV O'Hagan J Zhang W Haylock RJ Hunter N 《Radiation and environmental biophysics》2011,50(4):539-552
Incidence and mortality from cerebrovascular diseases (CVD) (430–438 ICD-9 codes) have been studied in a cohort of 18,763
workers first employed at the Mayak Production Association (Mayak PA) in 1948–1972 and followed up to the end of 2005. Some
of the workers were exposed to external gamma-rays only while others were exposed to a mixture of external gamma-rays and
internal alpha-particle radiation due to incorporated 239Pu. After adjusting for non-radiation factors, there were significantly increasing trends in CVD incidence with total absorbed
dose from external gamma-rays and total absorbed dose to liver from internal alpha radiation. The CVD incidence was statistically
significantly higher among workers with total absorbed external gamma-ray doses greater than 0.20 Gy compared to those exposed
to lower doses; the data were consistent with a linear trend in risk with external dose. The CVD incidence was statistically
significantly higher among workers with total absorbed internal alpha-radiation doses to liver from incorporated 239Pu greater than 0.025 Gy compared to those exposed to lower doses. There was no statistically significant trend in CVD mortality
risk with either external gamma-ray dose or internal alpha-radiation dose to liver. The risk estimates obtained are generally
compatible with those from other large occupational studies, although the incidence data point to higher risk estimates compared
to those from the Japanese A-bomb survivors. Further studies of the unique cohort of Mayak workers chronically exposed to
external and internal radiation will allow improving the reliability and validating the radiation safety standards for occupational
and public exposure. 相似文献
7.
IL Minn Melissa M. Rolls Wendy Hanna-Rose Christian J. Malone 《Molecular biology of the cell》2009,20(21):4586-4595
Klarsicht/ANC-1/Syne/homology (KASH)/Sad-1/UNC-84 (SUN) protein pairs can act as connectors between cytoplasmic organelles and the nucleoskeleton. Caenorhabditis elegans ZYG-12 and SUN-1 are essential for centrosome–nucleus attachment. Although SUN-1 has a canonical SUN domain, ZYG-12 has a divergent KASH domain. Here, we establish that the ZYG-12 mini KASH domain is functional and, in combination with a portion of coiled-coil domain, is sufficient for nuclear envelope localization. ZYG-12 and SUN-1 are hypothesized to be outer and inner nuclear membrane proteins, respectively, and to interact, but neither their topologies nor their physical interaction has been directly investigated. We show that ZYG-12 is a type II outer nuclear membrane (ONM) protein and that SUN-1 is a type II inner nuclear membrane protein. The proteins interact in the luminal space of the nuclear envelope via the ZYG-12 mini KASH domain and a region of SUN-1 that does not include the SUN domain. SUN-1 is hypothesized to restrict ZYG-12 to the ONM, preventing diffusion through the endoplasmic reticulum. We establish that ZYG-12 is indeed immobile at the ONM by using fluorescence recovery after photobleaching and show that SUN-1 is sufficient to localize ZYG-12 in cells. This work supports current models of KASH/SUN pairs and highlights the diversity in sequence elements defining KASH domains. 相似文献
8.
9.
The proliferation/differentiation balance of stem and progenitor cell populations must respond to the physiological needs of the organism [1, 2]. Mechanisms underlying this plasticity are not well understood. The C. elegans germline provides a tractable system to study the influence of the environment on progenitor cells (stem cells and their proliferative progeny). Germline progenitors accumulate during larval stages to form an adult pool from which gametes are produced. Notch pathway signaling from the distal tip cell (DTC) niche to the germline maintains the progenitor pool [3-5], and the larval germline cell cycle is boosted by insulin/IGF-like receptor signaling [6]. Here we show that, independent of its role in the dauer decision, TGF-β regulates the balance of proliferation versus differentiation in the C. elegans germline in response to sensory cues that report population density and food abundance. Ciliated ASI sensory neurons are required for TGF-β-mediated expansion of the larval germline progenitor pool, and the TGF-β receptor pathway acts in the germline stem cell niche. TGF-β signaling thereby couples germline development to the quality of the environment, providing a novel cellular and molecular mechanism linking sensory experience of the environment to reproduction. 相似文献
10.
《Autophagy》2013,9(6):569-580
Autophagy is a conserved membrane trafficking pathway that mediates the delivery of cytoplasmic substrates to the lysosome for degradation. Impaired autophagic function is implicated in the pathology of various neurodegenerative diseases. We have generated transgenic C. elegans that express human β-amyloid peptide (Aβ) in order to examine the mechanism(s) of Aβ-toxicity. In this model, Aβ expression causes autophagosome accumulation, thereby mimicking a pathology found in brains of Alzheimer’s disease patients. Furthermore, we demonstrate that decreased insulin-receptor signaling [using the daf-2(e1370) mutation] suppresses Aβ-induced paralysis by a mechanism that requires autophagy. Surprisingly, the daf-2 mutation also decreases Aβ-induced autophagosome accumulation. These observations can be explained by a model in which decreased insulin-receptor signaling promotes the maturation of autophagosomes into degradative autolysosomes, whereas Aβ impairs this process. Consistent with this model, we find that RNAi-mediated knock-down of lysosomal components results in enhanced Aβ-toxicity and autophagosome accumulation. Also, Aβ; daf-2(e1370) nematodes contain more lysosomes than either Aβ or control strains. Finally, we demonstrate that decreased insulin-receptor signaling promotes the autophagic degradation of Aβ. 相似文献
11.
Henry?H. Mattingly Jessica?J. Chen Swathi Arur Stanislav?Y. Shvartsman 《Biophysical journal》2015,109(11):2436-2445
The Caenorhabditis elegans germline is a well-studied model system for investigating the control of cell fate by signaling pathways. Cell signals at the distal tip of the germline promote cell proliferation; just before the loop, signals couple cell maturation to organism-level nutrient status; at the proximal end of the germline, signals coordinate oocyte maturation and fertilization in the presence of sperm. The latter two events require dual phosphorylation and activation of ERK, the effector molecule of the Ras/MAPK cascade. In C. elegans, ERK is known as MPK-1. At this point, none of today’s methods for real-time monitoring of dually phosphorylated MPK-1 are working in the germline. Consequently, quantitative understanding of the MPK-1-dependent processes during germline development is limited. Here, we make a step toward advancing this understanding using a model-based framework that reconstructs the time course of MPK-1 activation from a snapshot of a fixed germline. Our approach builds on a number of recent studies for estimating temporal dynamics from fixed organisms, but takes advantage of the anatomy of the germline to simplify the analysis. Our model predicts that the MPK-1 signal turns on ∼30 h into germ cell progression and peaks ∼7 h later. 相似文献
12.
13.
Asagoshi K Lehmann W Braithwaite EK Santana-Santos L Prasad R Freedman JH Van Houten B Wilson SH 《Nucleic acids research》2012,40(2):670-681
The base excision DNA repair (BER) pathway known to occur in Caenorhabditis elegans has not been well characterized. Even less is known about the DNA polymerase (pol) requirement for the gap-filling step during BER. We now report on characterization of in vitro uracil-DNA initiated BER in C. elegans. The results revealed single-nucleotide (SN) gap-filling DNA polymerase activity and complete BER. The gap-filling polymerase activity was not due to a DNA polymerase β (pol β) homolog, or to another X-family polymerase, since computer-based sequence analyses of the C. elegans genome failed to show a match for a pol β-like gene or other X-family polymerases. Activity gel analysis confirmed the absence of pol β in the C. elegans extract. BER gap-filling polymerase activity was partially inhibited by both dideoxynucleotide and aphidicolin. The results are consistent with a combination of both replicative polymerase(s) and lesion bypass/BER polymerase pol θ contributing to the BER gap-filling synthesis. Involvement of pol θ was confirmed in experiments with extract from pol θ null animals. The presence of the SN BER in C. elegans is supported by these results, despite the absence of a pol β-like enzyme or other X-family polymerase. 相似文献
14.
Bruce D. Smith 《Human ecology: an interdisciplinary journal》1974,2(1):31-43
Archeological findings provide the basis for analyzing the exploitation of deer by Powers Phase Indian hunters in the southeastern Ozarks circaA.D. 1300. Predatory patterns of wolves have been documented. It is hypothesized that men and wolves were complementary, noncompetitive predators and that their predation functioned to keep the deer population within the carrying capacity of the southeastern Ozarks. A model is developed to illustrate the predator-prey relationships in the area.Powers Phase Research Project is financed by National Science Foundation Grant GS-3215 to James B. Griffin, University of Michigan.The term Powers Phase has been applied to a pre-Columbian American Indian population of Middle Mississippian cultural affiliation which occupied an area in southeast Missouri for a relatively short period of timecirca A.D. 1300. 相似文献
15.
We examine the nonlinear reaction–diffusion–advection equations to modeling of the predator–prey system under heterogeneous carrying capacity of the prey, and Holling type II functional response. When advection and diffusion fluxes are absent or small, we detect the discrepancy between the resource (carrying capacity) and species distributions. The large diffusion eliminates this effect. We propose a modification of the functional response coefficients to provide the correlation between species distribution and resource in both cases. The numerical simulation of several models both under small and moderate advection–diffusion fluxes is carried out. 相似文献
16.
Maike Kittelmann Jan Hegermann Alexandr Goncharov Hidenori Taru Mark H. Ellisman Janet E. Richmond Yishi Jin Stefan Eimer 《The Journal of cell biology》2013,203(5):849-863
Synaptic vesicle (SV) release is spatially and temporally regulated by a network of proteins that form the presynaptic active zone (AZ). The hallmark of most AZs is an electron-dense projection (DP) surrounded by SVs. Despite their importance for our understanding of triggered SV release, high-resolution analyses of DP structures are limited. Using electron microscopy, we show that DPs at Caenorhabditis elegans neuromuscular junctions (NMJs) were highly structured, composed of building units forming bays in which SVs are docked to the AZ membrane. Furthermore, larger ribbonlike DPs that were multimers of the NMJ building unit are found at synapses between inter- and motoneurons. We also demonstrate that DP size is determined by the activity of the AZ protein SYD-2/Liprin-α. Whereas loss of syd-2 function led to smaller DPs, syd-2 gain-of-function mutants displayed larger ribbonlike DPs through increased recruitment of ELKS-1/ELKS. Therefore, our data suggest that a main role of SYD-2/Liprin-α in synaptogenesis is to regulate the polymerization of DPs. 相似文献
17.
Translesion synthesis (TLS) polymerases are specialized DNA polymerases capable of inserting nucleotides opposite DNA lesions that escape removal by dedicated DNA repair pathways. TLS polymerases allow cells to complete DNA replication in the presence of damage, thereby preventing checkpoint activation, genome instability, and cell death. Here, we characterize functional knockouts for polh-1 and polk-1, encoding the Caenorhabditis elegans homologs of the Y-family TLS polymerases η and κ. POLH-1 acts at many different DNA lesions as it protects cells against a wide range of DNA damaging agents, including UV, γ-irradiation, cisplatin, and methyl methane sulphonate (MMS). POLK-1 acts specifically but redundantly with POLH-1 in protection against methylation damage. Importantly, both polymerases play a prominent role early in embryonic development to allow fast replication of damaged genomes. Contrary to observations in mammalian cells, we show that neither POLH-1 nor POLK-1 is required for homologous recombination (HR) repair of DNA double-strand breaks. A genome-wide RNAi screen for genes that protect the C. elegans genome against MMS-induced DNA damage identified novel components in DNA damage bypass in the early embryo. Our data suggest SUMO-mediated regulation of both POLH-1 and POLK-1, and point towards a previously unrecognized role of the nuclear pore in regulating TLS. 相似文献
18.
Seung-Hwan Kim Antonia H. Holway Suzanne Wolff Andrew Dillin W. Matthew Michael 《The Journal of cell biology》2009,184(4):613-627
Yb regulates the proliferation of both germline and somatic stem cells in the Drosophila melanogaster ovary by activating piwi and hh expression in niche cells. In this study, we show that Yb protein is localized as discrete cytoplasmic spots exclusively in the somatic cells of the ovary and testis. These spots, which are different from all known cytoplasmic structures in D. melanogaster, are evenly electron-dense spheres 1.5 µm in diameter (herein termed the Yb body). The Yb body is frequently associated with mitochondria and a less electron-dense sphere of similar size that appears to be RNA rich. There are one to two Yb bodies/cell, often located close to germline cells. The N-terminal region of Yb is required for hh expression in niche cells, whereas the C-terminal region is required for localization to Yb bodies. The entire Yb protein is necessary for piwi expression in niche cells. A double mutant of Yb and a novel locus show male germline loss, revealing a function for Yb in male germline stem cell maintenance. 相似文献
19.
The early C. elegans embryo is an attractive model system to investigate fundamental developmental processes. With the exception of mex-3 mRNA, maternally contributed mRNAs are thought to be distributed uniformly in the one-cell embryo. Here, we report and characterize the striking distribution of the mRNA encoding the novel protein ERA-1. We found that era-1 mRNA is enriched in the anterior of the one-cell embryo and present solely in anterior blastomeres thereafter. Although era-1 is not an essential gene, we uncovered that era-1 null mutant embryos are sensitive to slight impairment of embryonic polarity. We found that the asymmetric distribution of era-1 mRNA depends on anterior-posterior polarity cues and on the era-1 3’UTR. Similarly to the era-1 mRNA, the YFP-ERA-1 protein is enriched in anterior blastomeres. Interestingly, we found that the RNA-binding protein MEX-5 is required for era-1 mRNA asymmetry. Furthermore, we show that MEX-5, together with its partially redundant partner MEX-6, are needed to activate era-1 mRNA translation in anterior blastomeres. These findings lead us to propose that MEX-5/6–mediated regulation of era-1 mRNA contributes to robust embryonic development. 相似文献