首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iranian mangrove forests occur between longitude 25°19′ and 27°84′, in the north part of the Persian Gulf and Oman Sea. In 2002, it was estimated that 93.37 km2 of Iranian shorelines were covered with mangrove forests, with the largest area (67.5 km2) occurring between the Khamir Port and the northwest side of Qeshm Island, and the smallest area (0.01 km2) in the Bardestan estuary. Only two species of mangrove are found in the Persian Gulf: Avicennia marina from Avicenniaceae and Rhizophora macrunata from Rhizophoraceae. A. marina is the dominant specie in these forests whereas Rh. macrunata is found only in the Sirik region. Overexploitation of mangrove leaves and oil pollution are the main causes of mangrove destruction in this region.  相似文献   

2.
《Aquatic Botany》2005,81(4):353-366
Carbon fixation and allocation were studied using 13C incubation and leaf marking techniques in mature monospecific stands of Enhalus acoroides L.f. Royle in August 1998 and January 1999 in Banten Bay, Indonesia. The highest rate of 13C uptake (>0.008 g 13C g C−1 d−1) was found in the middle to distal parts of leaves of E. acoroides. Young and senescing leaves numbers had lower 13C incorporation compared to mature leaves. The incorporation of 13C by epiphytes on the leaves was higher than that of the leaves themselves (>0.01 g 13C g C−1 d−1). The results showed that turbidity of the water influenced the leaf growth, productivity and Relative Growth Rate of E. acoroides, which were lower at Kepuh Island, the more turbid site. However, at Kepuh Island, where the water column was turbid, the plant could still harvest sufficient light for an uptake rate of 13C, higher than the uptake rates at Kubur and Panjang Islands, stations with a much more transparent water column (on average 0.0047 g 13C g C−1 d−1 at Kepuh Island, versus 0.0045 g 13C g C−1 d−1 at Panjang Island and 0.0034 g 13C g C−1 d−1 at Kubur Island). There was evidence that 13C was exported from the incubated shoots to the roots and rhizomes and to neighboring shoots of E. acoroides in clear water, but not in turbid water. We suggest that single shoots of E. acoroides are able to grow in turbid water under low light conditions. They assimilate sufficient carbon for their own maintenance but are not able to export to neighboring plant parts.  相似文献   

3.
The impacts of salt stress and inoculation in in vitro grapevine (Vitis vinifera L.) growth, nutrient accumulation, osmoregulation, photosynthesis and membrane integrity were evaluated. One month exposure to 100 mM NaCl as well as to inoculation with Phaeomoniella chlamydospora reduced relative growth rate (RGR) and induced senescence in grapevine plants, shown by: (1) decrease of Ψπ without osmoregulation, (2) decrease of chlorophyll content and fluorescence, (3) loss of membrane integrity and (4) nutritional disorders. To assess putative changes in structural and/or non-structural carbohydrates induced by these two stress conditions, alcohol insoluble residues from the roots, stems and leaves were also characterised by FT-IR and GC with respect to the sugar composition. The referred organs were distinguished based on: (1) higher proportion of uronic acid residues in leaves which diagnose the presence of pectic polysaccharides (wavenumbers 1100, 1150 and 1018 cm?1 in FT-IR spectra), (2) higher proportion of xylose and glucose on stems and FT-IR spectra diagnostic of xylose-rich polysaccharides (1041 cm?1) and cellulose (1060 cm?1), (3) higher proportion of glucose residues, xylose and arabinose on roots and a FT-IR spectra characteristic of xylose-rich polysaccharides (1041 cm?1). The main alterations induced by salt stress and inoculation were more visible in leaves, where the content of uronic acid decreased showing that changes in cell wall composition occurred, mostly at the pectic fraction. Besides, an accumulation of insoluble glucose was found, and FT-IR spectra showed that this glucose-based material was starch (maximum absorption at 998 cm?1), accumulated as a non-specific response to salt stress and P. chlamydospora inoculation.  相似文献   

4.
Although some plant responses to salinity have been characterized, the precise mechanisms by which salt stress damages plants are still poorly understood especially in woody plants. In the present study, the physiological and biochemical responses of Broussonetia papyrifera, a tree species of the family, Moraceae, to salinity were studied. In vitro-produced plantlets of B. papyrifera were treated with varying levels of NaCl (0, 50, 100 and 150 mM) in hydroponic culture. Changes in ion contents, accumulation of H2O2, as well as the activities and isoform profiles of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in the leaves, stems and roots were investigated. Under salt stress, there was higher Na+ accumulation in roots than in stems and leaves, and Ca2 +, Mg2 + and P3 + content, as well as K+/Na+ ratio were affected. NaCl treatment induced an increase in H2O2 contents in the tissues of B. papyrifera. The work demonstrated that activities of antioxidant defense enzymes changed in parallel with the increased H2O2 and salinity appeared to be associated with differential regulation of distinct SOD and POD isoenzymes. Moreover, SDS-PAGE analysis of total proteins extracted from leaves and roots of control and NaCl-treated plantlets revealed that in the leaves salt stress was associated with decrease or disappearance of some protein bands, and induction of a new protein band after exposure to 100 and 150 mM NaCl. In contrast, NaCl stress had little effect on the protein pattern in the roots. In summary, these findings may provide insight into the mechanisms of the response of woody plants to salt stress.  相似文献   

5.
The present study demonstrates the influence of the duration of periodical waterlogging with artificial seawater on the photosynthetic and physiological responses of Kandelia candel L. Druce seedlings, the pre-dominant species of subtropical mangroves in China. Artificial tidal fluctuations applied here closely mimicked the twice daily tidal inundation which mangroves experience in the field. All the seedlings were immersed in artificial seawater during 70-day cultivation. Similar trends with increasing duration of immersion occurred in photosynthetic rate, transpiration rate, stomatal conductance and intercellular CO2 concentration, where significant decreases occurred only in long time treatments of 10 or 12 h. Water used efficiency and chlorophyll contents showed lower in medium periods and higher in long periods of immersion. This indicates that the increase in pigment contents of leaves was ineffective in promoting Pn under long time immersion. Light saturation points under short time waterlogging (0–4 h) occurred at light intensities of 800–1000 μmol/m2/s, and at around 400 μmol/m2/s in long time treatments (8–12 h). Long periods of tidal immersion therefore significantly inhibited photosynthesis of mature leaves. Alcohol dehydrogenase and oxidase activity in roots both increased under longer immersion periods, suggesting that roots are sensitive to anaerobiosis under long term waterlogging. The activities of peroxidase and superoxide dismutase in mature leaves increased in 8 h and 10 h treatments, respectively. The content of malondialdehyde in mature leaves increased under long time treatments. Abscisic acid accumulation in mature leaves also had a sharp increase from 8 h to 12 h inundation. Even though the anti-oxidative enzymes were induced by waterlogging, this was not sufficient to protect the seedlings from senescence. The results suggested that K. candel seedlings completely tolerated tidal immersion by seawater up to about 8 h in each cycle, which matches the natural distribution of K. candel in inter-tidal zones of China.  相似文献   

6.
A series of computer-controlled mangrove tide-tanks planted with Kandelia candel was constructed to investigate the removal and transformation of ammonium–nitrogen under two tidal regimes: (i) 12-h wet/12-h dry (long tidal regime) and (ii) 6-h wet/6-h dry/6-h wet/6-h dry daily (short tidal regime). All tanks were irrigated with NH4Cl solution for nine water cycles (each cycle lasted for 5 weeks) at an amount of around 2.1 g NH4Cl (equivalent to 0.52 g N) per tank per cycle. During the experiment, total Kjeldahl nitrogen (TKN), inorganic nitrogen (N) (NH4+–, NO2?–, and NO3?–N) and carbon were completely removed by the mangrove system. The added NH4+–N was not detected in tidal water or accumulated in sediment. The mass balance of nitrogen showed that the discharge of ammonium-rich wastewater to mangrove wetlands enhanced microbial nitrogen transformation, particularly nitrification and denitrification processes, with 15–30% of the total nitrogen inputs returned to atmosphere as N2 gas. Growth of K. candel and macroalgae was stimulated by ammonium addition, and up to 3 and 7% of total N inputs were assimilated in plant and algal tissues, respectively. Constructed mangrove wetlands with short tidal regime had higher numbers of nitrifiers and significantly lower content of ammonium that those with long tidal regime. On the other hand, higher populations of denitrifiers and lower nitrate were found in mangroves with long tidal regime and with glucose addition.  相似文献   

7.
8.
《Aquatic Botany》2007,87(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

9.
Bechmeria nivea (L.) Gaud. (Ramie) is a promising species for Cd phytoextraction with large biomass and fast growth rate. Nevertheless, little information is available on its tolerance mechanisms towards Cd. Determination of Cd distribution and chemical speciation in ramie is essential for understanding the mechanisms involved in Cd accumulation, transportation and detoxification. In the present study, ramie plants were grown in hydroponics with increasing Cd concentrations (0, 1, 3, 7 mg l?1). The subcellular distribution and chemical forms of Cd in different tissues were determined after 20 days exposure to this metal. To assess the effect of Cd uptake on plant performance, nitrate reductase activity in leaves and root activity were analyzed during the entire experimental period. Increased Cd level in the medium caused a proportional increase in Cd uptake, and the highest Cd concentration occurred in roots, followed by stems and leaves. Subcellular fractionation of Cd-containing tissues indicated that about 48.2–61.9% of the element was localized in cell walls and 30.2–38.1% in soluble fraction, and the lowest in cellular organelles. Cd taken up by ramie rapidly equilibrated among different chemical forms. Results showed that the greatest amount of Cd was found in the extraction of 1 M NaCl and 2% HAC, and the least in residues in all test tissues. In roots, the subdominant amount of Cd was extracted by d-H2O and 80% ethanol, followed by 0.6 M HCl. While in stems and leaves, the amount of 0.6 M HCl-extractable Cd was comparable with that extracted by 80% ethanol or d-H2O. 1 mg l?1 Cd stimulated nitrate reductase activity in leaves and root activity, while a concentration-dependent inhibitory effect was observed with increasing Cd concentration, particularly at 7 mg l?1 Cd. It could be suggested that the protective mechanisms evolved by ramie play an important role in Cd detoxification at relatively low Cd concentrations (below 3 mg l?1 Cd) but become restricted to maintain internal homeostasis with higher Cd stress.  相似文献   

10.
《Aquatic Botany》2008,88(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

11.
选择乐清湾西门岛海域相同高程断面不同造林时间的人工红树林(秋茄林)、光滩和互花米草丛,采用空间代替时间的方法,分析我国分布最北界人工红树林造林过程对大型底栖生物的影响.大型底栖动物生活型分布基本表现为幼林(1、4、8a秋茄林)以底上附着型为主,而在光滩、50a秋茄林和互花米草中底下生活类群相对增加.并且穴居型动物只出现在发育成熟的生态系统内.各项指标显示50a老林群落生态稳定性较好,光滩和互花米草丛次之,但优于发育中的秋茄幼林.与以往研究结果不同,50a老林的大型底栖动物生物种类的丰度及群落的物种多样性最高,并不与红树林的发育状况呈负相关,也不比邻近光滩低.结合50a林下滩涂底泥情况,西门岛50a红树林林下滩涂的底质发育要落后于国内天然红树林土壤.这可能与当地红树林造林规模小以及强潮差海域有关.此外,红树林恢复过程中,大型底栖动物生物多样性与生态稳定性之间的线性关系,其适用的系统面积和演替时间的尺度范围有必要做更加深入的探讨.  相似文献   

12.
Greenhouse experiments were conducted to assess the effect of salinisation of soil on emergence, growth, water content, proline content and mineral accumulation of seedlings of Delonix regia (Hook.) Raf. (Fabaceae). Sodium chloride (NaCl) was added to the soil and salinity was maintained at 0.3, 1.9, 3.9, 6.0 and 7.9 dS m?1. A negative relationship between seedling emergence and salt concentration was obtained. Salinity caused reduction in water content and water potential of tissues (leaves, stems, tap roots and lateral roots) that resulted in internal water deficit to plants. Consequently, shoot and root elongation, leaf expansion and dry matter accumulation in leaves, stems, tap roots and lateral root tissues of seedlings significantly decreased in response to increasing concentration of salt. Proline content in tissues was very low. There were no effective mechanisms to control net uptake of Na on root plasma membrane and subsequently its transport to shoot tissues. Potassium content significantly decreased in tissues in response to salinisation of soil. This tree species is a moderate salt-tolerant glycophytic plant. Nitrogen and calcium content in tissues significantly decreased as soil salinity increased. Phosphors content in tissues exhibited a declining trend with increase in soil salinity. Changes in tissues and whole-plant accumulation pattern of other elements tested, as well as possible mechanisms for avoidance of Na toxicity in this tree species in response to salinisation, are discussed.  相似文献   

13.
Two marine bacterial strains designated Y2-1-60T and GM1-28 were isolated from sediments of cordgrass and mangrove along the Luoyang estuary in Quanzhou Bay, China, respectively. Both strains were Gram-staining-negative, straight rod-shaped, non-flagellum, facultatively anaerobic, nitrogen-fixing, and did not contain carotenoid pigment. Catalase activities were found to be weak positive and oxidase activities negative. The 16S rRNA gene sequences of the two strains were identical and had maximum similarity of 98.0% with Maribellus luteus XSD2T, and of <94.5% with other species. ANI value (96.9%) and DDH estimate (71.5%) between the two strains supported that they belonged to the same species. ANI value and DDH estimate between the two strains and M. luteus XSD2T was 74.3% and 19.4%, respectively, indicating that they represent a novel species. Phylogenetic analysis based on 16S rRNA gene and phylogenomic analysis indicated that strains Y2-1-60T and GM1-28 formed a monophyletic branch within the genus Maribellus. The respiratory quinone was menaquinone MK-7. The major fatty acid (>10%) consisted of iso-C15:0, and iso-C17:0 3-OH. The polar lipids consisted of phosphatidylethanolamine and several unidentified lipids. The genomic G + C contents were 41.9–42.0 mol%. Gene annotation revealed that strains Y2-1-60T and GM1-28 contained a set of nif gene cluster (nifHDKENB) responsible for nitrogen fixation. Based on the above characteristics, strains Y2-1-60T and GM1-28 represent a novel species within the genus Maribellus. Thus, Maribellus sediminis sp. nov. is proposed with type strain Y2-1-60T (=MCCC 1K04285T = KCTC 72884T), isolated from cordgrass sediment and strain GM1-28 (=MCCC 1K04384 = KCTC 72880), isolated from mangrove sediment.  相似文献   

14.
The diversity and metal tolerance of endophytic fungi from six dominant plant species in a Pb–Zn mine wasteland in Yunnan, China were investigated. Four hundred and ninety-five endophytic fungi were isolated from 690 tissue segments. The endophytic fungal colonization extent and isolation extent ranged from 59 % to 75 %, and 0.42–0.93, respectively, and a positive correlation was detected between them. Stems harboured more endophytic fungi than leaves in each plant species, and the average colonization extent of stems was 82 %, being significantly higher than that of leaves (47 %) (P  0.001, chi-square test). The fungi were identified to 20 taxa in which Phoma, Alternaria and Peyronellaea were the dominant genera and the relative frequencies of them were 39.6 %, 19.0 % and 20.4 %, respectively. Metal tolerance test showed that 3.6 mM Pb2+ or 11.5 mM Zn2+ exhibited the greatest toxicity to some isolates and they did not grow on the metal-amended media. In contrast, some isolates were growth stimulated in the presence of tested metals. The isolates of Phoma were more sensitive to Zn2+ than the isolates of Alternaria and Peyronellaea. However, the sensitivity of isolates to Pb2+ was not significantly different among Phoma, Alternaria, Peyronellaea and other taxa (P > 0.05, chi-square test). Our results suggested that fungal endophyte colonization in Pb–Zn polluted plants is moderately abundant and some isolates have a marked adaptation to Pb2+ and Zn2+ metals, which has a potential application in phytoremediation in this area.  相似文献   

15.
Harpagophytum procumbens is a medicinal plant containing several compounds with pharmaceutical activity. Previously, we established shoot culture and in vitro regenerated plants of H. procumbens. In this study, HPLC and LC-ESI-MS were used to identify harpagoside, harpagide, verbascoside and isoverbascoside in various tissues (stems, leaves and callus) of shoots multiplied on Schenk and Hildebrandt (SH) solid medium supplemented with 0.57 μM indole-3-acetic acid (IAA) and 8 μM 6-benzylaminopurine (BAP), as well as in stems, leaves and root tubers of in vitro propagated plants grown in the greenhouse for 3, 6 and 12 months. The content of the compounds was also determined by HPLC. For comparison, control H. procumbens plants initiated from seeds were analyzed. H. procumbens shoots grown under in vitro conditions accumulated lower amounts of iridoids and phenylethanoids than the plants derived from them. The levels of analyzed compounds were higher in the organs of 3- or 6-month-old plants than in those of 12-month-old plants. Differences in the distribution of secondary metabolites were also observed between organs. The aerial parts (stems, leaves) of 3-month-old in vitro regenerated plants were characterized by the highest amounts of phenylethanoids, which significantly exceeded those detected in control plants. Total iridoid content, calculated as the sum of harpagoside and harpagide, was highest in the root tubers of 6-month-old plants. In these organs the level of harpagoside was comparable to that in root tubers of 6-month-old seed-propagated plants, but the level of harpagide was much lower.  相似文献   

16.
《Aquatic Botany》2005,83(4):263-280
Leaf production and population dynamics of Zostera japonica were examined at three elevations of an intertidal transect in Seungbongdo Island on the western coast of Korea. Morphometrics, shoot density, biomass, leaf production, reproductive effort and environmental factors were monitored from October 2001 to October 2002. Z. japonica grew well in the lower intertidal zone from 0.2 to 1.0 m above mean chart datum. The upper station (St. 1) exhibited a finer sediment grain size and richer organic content than the middle (St. 2) and lower stations (St. 3). The size of shoots and leaves was significantly greater at St. 1 than at St. 3, whereas the rhizome internodes were longer at St. 3. Despite differences in morphological characteristics among three stations, seagrass biomass and shoot density were not significantly different among study sites. Shoot density, biomass, morphometrics and leaf productivity exhibited clear seasonal variations, which varied along with seasonal changes of water and air temperature. Leaf productivity measured by the clip and reharvest method was highest in September (4.3 g DW m−2 d−1) and lowest in February (0.2 g DW m−2 d−1). Reproductive shoots rapidly increased to maximum density along with the high water temperature in July to September. In the intertidal zone, Z. japonica exhibited faster vegetative growth on muddy sand than on sand, probably due to the difference in nutrient supply. The seasonal changes of water and air temperature were considered to play an important role in the seasonal leaf growth of Z. japonica.  相似文献   

17.
《Ecological Indicators》2008,8(5):454-461
In order to evaluate the dispersal pattern of airborne fluoride emissions, from a single source in the city of Ouro Preto, Brazil, the fluoride impact on some herbaceous plant species was studied using the plants as passive bioindicators. Foliar fluoride contents of eight species collected at different distances from an aluminium smelter were analyzed. The plant species were: Baccaharis dracunculifolia, Bidens pilosa, Borreria verticillata, Calopogonium mucunoides, Erigeron bonariensis, Hedychium coronarium, Ipomoea purpurea and Ipomoea cairica. In all species the fluoride accumulation decreased exponentially with the distance from the emission source. There was specific and distinct variation in fluoride accumulation among the species, a group of high-accumulator species (B. dracunculifolia and Bidens pilosa) and a group of low-accumulator species (I. cairica, H. coronarium and Borreria verticillata). C. mucunoides and E. bonariensis occupied an intermediate position. There was a pattern of plant contamination response during the periods analyzed. The plants nearest to the emission source, between 0.4 km northwest and 1.1 km east, showed fluoride contamination traits in leaves reaching values between 100 and 500 μg g−1. Moreover, fluoride contents higher than 1000 μg g−1 were found in these plants. At the most distant stations, situated 2.9 km northwest and 6 km east from the factory, the fluoride content of the dry matter was less than 10 μg g−1 showing that plants at those distances were submitted to minimum contamination. There were different patterns of tolerance among the species analyzed. While B. dracunculifolia accumulated fluoride up to 1500 μg g−1 in dry matter without any signs of injury, Borreria verticillata showed severe necrosis in leaves, but the fluoride content found was not higher than 120 μg g−1.  相似文献   

18.
In the rosaceous subtribe Pyrinae (formerly subfamily Maloideae), pathogen attack leads to formation of biphenyls and dibenzofurans. Accumulation of these phytoalexins was studied in greenhouse-grown grafted shoots of Malus domestica cv. ‘Holsteiner Cox’ and Pyrus communis cv. ‘Conference’ after inoculation with the fire blight bacterium, Erwinia amylovora. No phytoalexins were found in leaves. However, both classes of defence compounds were detected in the transition zone of stems. The flanking stem segments above and below this zone, which were necrotic and healthy, respectively, were devoid of detectable phytoalexins. The transition zone of apple stems contained the biphenyls 3-hydroxy-5-methoxyaucuparin, aucuparin, noraucuparin and 2′-hydroxyaucuparin and the dibenzofurans eriobofuran and noreriobofuran. In pear, aucuparin, 2′-hydroxyaucuparin, noreriobofuran and in addition 3,4,5-trimethoxybiphenyl were detected. The total phytoalexin content in the transition zone of pear was 25 times lower than that in apple. Leaves and stems of mock-inoculated apple and pear shoots lacked phytoalexins. A number of biphenyls and dibenzofurans were tested for their in vitro antibacterial activity against some Erwinia amylovora strains. The most efficient compound was 3,5-dihydroxybiphenyl (MIC = 115 μg/ml), the immediate product of biphenyl synthase which initiates phytoalexin biosynthesis.  相似文献   

19.
The potential toxicity of nanoparticles in plants is scarce and contradictory. Despite the diversity of research efforts, a detailed explanation of the TiO2NPS effects in plant photosynthesis is still missing. The present work gives a new approach to examine the impact of the TiO2NPs on crop production (development and photosynthesis) and plant protection (tolerance and defense systems) in fenugreek (Trigonella foenum graecum L.). Seedlings were assessed in greenhouse trials to estimate the influence of TiO2NPs on physiological characters for 16 days. They were treated with TiO2NPs at a size less than 20 nm. The results revealed that there were no significant effects on seedlings growth and biomass of stem, but a decrease in the fresh weight of leaves after TiO2NPs treatment. Plants treated with 100 mg·L?1 of TiO2NPs presented a reduction and chlorosis in leaf area due to a significant decrease in the chlorophyll a and b contents. The highest value of the photosynthetic pigments was recorded at 50 mg·L?1 of TiO2NPs. However, the treatment with 100 mg·L?1 of TiO2NPs caused a decrease in the levels of chlorophyll a, b and of carotenoids. Both doses of TiO2NPs induced an accumulation of anthocyanins compared to the control after 16 days of seedling development. A nano-stress significantly decreased the flavonoids level, but increased that of polyphenols compared to control after 16 days of exposure. The decrease in the translocation ratio of flavonoids suggests that many of them contain an enediol group, which suggests that they may act as bidentate ligands for anatase TiO2NPs. Accordingly, nano-stressed leaves exhibited significantly enhanced GPOX, CAT and APX activity levels. On the contrary, GPOX and CAT activities were reduced substantially in stems treated with 100 mg·L?1 TiO2NPs. The accumulation of MDA was found to be higher in stems than in leaves. This could be explained by the accumulation of nanoparticles in different organs; it could be that the stems are the favored targets of nanoparticles. These results underline the necessity for a deeper estimation of nanoparticle ecotoxicity and particularly concerning their interaction with plants.  相似文献   

20.
The current work aims to stimulate the production of rhoifolin and tiliroside as two valuable phytochemicals from Chorisia chodatii Hassl. and Chorisia speciosa A. St.-Hil. callus cultures. A comparison between three explants from the in vitro germinated seedlings of both species for callus induction and accumulation of both flavonoids was carried out. Highly efficient calluses were induced from the leaves, stems and roots of C. chodatii seedlings on Gamborg’s B5 (B5) and Murashige and Skoog (MS) media containing 2.0 mg/l β-naphthalene acetic acid (NAA) and 0.5 mg/l 6-benzyladenin (BA) or kinetin (Kn), while those of C. speciosa seedlings efficiently produced calluses on both media supplemented with 0.5 or 1.0 mg/l NAA and 0.5 mg/l BA. Besides, the highest contents of rhoifolin (1.927 mg/g DW) and tiliroside (1.776 mg/g DW) from C. speciosa cultures were obtained from the calluses of seedlings’ roots and stems maintained on B5 medium containing 1.0 mg/l NAA and 0.5 mg/l BA, respectively. On the other hand, the maximum rhoifolin content (0.555 mg/g DW) from C. chodatii cultures was obtained from the calluses of seedlings’ stems grown on B5 medium supplemented with 2.0 mg/l NAA and 0.5 mg/l BA, whereas the highest tiliroside content (0.547 mg/g DW) was provided by the root explants on B5 medium containing 2.0 mg/l NAA and 0.5 mg/l Kn. Both flavonoids were bioaccumulated in greater amounts than the wild and cultivated intact plants, which provides a promising tool for their future commercial production under a controlled environment, independent of climate and soil conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号