首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

All-trans retinoic acid (RA) is one of the most important morphogens with pleiotropic actions. Its embryonic distribution correlates with neural differentiation in the developing central nervous system. To explore the precise effects of RA on neural differentiation of mouse embryonic stem cells (ESCs), we detected expression of RA nuclear receptors and RA-metabolizing enzymes in mouse ESCs and investigated the roles of RA in adherent monolayer culture.  相似文献   

2.
BMP is thought to induce hESC differentiation toward multiple lineages including mesoderm and trophoblast. The BMP-induced trophoblast phenotype is a long-standing paradox in stem cell biology. Here we readdressed BMP function in hESCs and mouse epiblast-derived cells. We found that BMP4 cooperates with FGF2 (via ERK) to induce mesoderm and to inhibit endoderm differentiation. These conditions induced cells with high levels of BRACHYURY (BRA) that coexpressed CDX2. BRA was necessary for and preceded CDX2 expression; both genes were essential for expression not only of mesodermal genes but also of trophoblast-associated genes. Maximal expression of the latter was seen in the absence of FGF but these cells coexpressed mesodermal genes and moreover they differed in cell surface and epigenetic properties from placental trophoblast. We conclude that BMP induces human and mouse pluripotent stem cells primarily to form mesoderm, rather than trophoblast, acting through BRA and CDX2.  相似文献   

3.
Despite recent advances in the derivation of rat embryonic stem cells, clear comprehension of the timing and mechanisms underlying rat early embryo lineage selection is lacking. We have previously shown the in vivo contribution of rat embryonic stem-like cells exclusively to developing extraembryonic tissues. To elucidate possible mechanisms governing the in vitro and in vivo behaviors of these rat blastocyst-derived stem cells, we evaluated their developmental capacity by using several approaches. Molecular marker analysis demonstrated the expression profile of genes characterizing not only pluripotency but also extraembryonic endoderm and trophoblast. In vitro differentiation through embryoid body formation showed in vitro pluripotent capacity through differentiation into derivatives of all three embryonic germ layers. Following either blastocyst injection, diploid or tetraploid aggregation, and embryo transfer, these rat blastocyst-derived stem cells also demonstrated in vivo multipotency through contribution to multiple developmentally distinct extraembryonic lineages. Features of phenotypic heterogeneity were revealed following examination of cell line morphology and culture behavior, as well as quantitative analysis of marker expression in discrete undifferentiated and differentiated populations of cells by flow cytometry. We demonstrate for the first time that stem cells derived from the rat blastocyst have the ability to contribute to the embryonic and extraembryonic lineages. Together, these results provide a valuable new model for rat stem cell biology and for the elucidation of early lineage selection in the embryo.  相似文献   

4.
Human embryonic stem cells (hESCs) are pluripotent stem cells with long-lasting capacity to self-renew and differentiate into various cell types of endodermal, ectodermal or mesodermal origin. Unlike mouse ESCs (mESCs), which can be maintained in an undifferentiated state simply by adding leukemia inhibitory factor (LIF) into the culture medium, hESCs are notorious for the sustained willingness to differentiate and not yet clearly defined signaling pathways that are crucial for their "stemness". Presently, our knowledge involves only limited number of growth factor signaling pathways that appear to be biologically relevant for stem cell functions in vitro. These include BMP, TGFbeta, Wnt, and FGF signaling pathway. The purpose of this review is to summarize recent data on the expression of FGFs and their receptors in hESCs, and critically evaluate the potential effects of FGF signals for their undifferentiated growth and/or differentiation in context with our current understanding of FGF/FGFR biology.  相似文献   

5.
《Cell Stem Cell》2022,29(9):1346-1365.e10
  1. Download : Download high-res image (218KB)
  2. Download : Download full-size image
  相似文献   

6.
7.
8.
Han X  Han J  Ding F  Cao S  Lim SS  Dai Y  Zhang R  Zhang Y  Lim B  Li N 《Cell research》2011,21(10):1509-1512
  相似文献   

9.
Most cells are coated by a dense glycocalyx composed of glycoconjugates such as glycosphingolipids, glycoproteins, and proteoglycans. The overall glycomic profile is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that regulate cell-cell adhesion, the immune response, microbial pathogenesis, and other cellular events. Many cell surface markers were discovered and identified as glycoconjugates such as stage-specific embryonic antigen, Tra-1-60/81 and various other cell surface molecules (e.g., cluster of differentiation). Recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). The glycomic profiles of these cells are highly cell type-specific and reflect cellular alterations, such as development, differentiation and cancerous change. In this mini review, we briefly summarize the glycosylation spectra specific to hESCs and hiPSCs, which cover glycans of all major glycoconjugates (i.e., glycosphingolipids, N- and O-glycans of glycoproteins, and glycosaminoglycans) and free oligosaccharides.  相似文献   

10.
Differentiation of embryonic stem (ES) cells generally occurs after formation of three-dimensional cell aggregates, known as embryoid bodies (EBs). This differentiation occurs following suspension culturing of EBs in media containing a high (25 mM) glucose concentration. Although high-glucose-containing media is used for maintenance and proliferation of ES cells, it has not been demonstrated whether this is a necessary requirement for EB development. To address this, we examined the growth and differentiation of EBs established in 0-mM, 5.5-mM (physiological), and 25-mM (high) glucose concentrations, through morphometric analysis and examination of gene and protein expression. The effect on EB development of supplementation with basic fibroblast growth factor (FGF2) was also studied. We report that the greatest rate of EB growth occurs in 5.5 mM glucose media. A morphological study of EBs over 104 days duration under glucose-containing conditions demonstrated the development of all three major embryonic cell types. The difference from normal human development was obvious in the lack of rostrocaudal control by the notochord. In the latest stages of development, the main tissue observed appeared to be cartilage and cells of a mesodermal lineage. We conclude that physiological glucose concentrations are suitable for the culturing of EBs, that the addition of FGF2 enhances the temporal expression of genes including POU5F1, nestin, FOXA2, ONECUT1, NEUROD1, PAX6, and insulin, and that EBs can be cultured in vitro for long periods, allowing for further examination of developmental processes.  相似文献   

11.
12.
Poor recovery of cryopreserved human embryonic stem (hES) cells and induced pluripotent stem (iPS) cells is a significant impediment to progress with pluripotent stem cells. In this study, we demonstrate that Y‐27632, a specific inhibitor of Rho kinase (ROCK) activity, significantly enhances recovery of hES cells from cryopreserved stocks when cultured with or without a growth inactivated feeder layer. Furthermore, treatment with the ROCK inhibitor for several days increased the number of colonies and colony size of hES cells compared to shorter exposures. Remarkably, hES cells that had formed relatively few colonies 5 days after thawing exhibited rapid growth upon addition of Y‐27632. Additionally, we determined that Y‐27632 significantly improves the recovery of cryopreserved human iPS cells and their growth upon subculture. Thus, Y‐27632 provides a means to “kick‐start” slow‐growing human pluripotent stem cells, especially after being thawed from frozen stocks. Together, these results argue that Y‐27632 is a useful tool in overcoming obstacles to studies involving the cultivation of both hES cells and human iPS cells. Mol. Reprod. Dev. 76: 722–732, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
14.
15.
Expansion of pluripotent human embryonic stem cells on human feeders   总被引:7,自引:0,他引:7  
Human embryonic stem cells (HES) hold great potential for regenerative medicine because of their ability to differentiate to any cell type. However, a limitation is that HES cells require a feeder layer to stay undifferentiated. Routinely, mouse embryonic fibroblast is used. However, for therapeutic applications, contamination with mouse cells may be considered unacceptable. In this study, we evaluated three commercially available human foreskin feeder (HF) lines for their ability to support HES cell growth in media supplemented with serum or serum replacer. HES cells on HF in serum replacer-supplemented media were cultured for >30 passages. They remained undifferentiated, maintained a normal karyotype, and continued to be positive for the pluripotent markers Oct-4, SOX-2, SSEA-4, GCTM-2, Tra-1-60, Tra-1-81, and alkaline phosphatase. In vivo, HES cells formed teratomas in SCID mouse models that represent the three embryonic germ layers. In contrast, HES cells cultured on HF in serum-supplemented media differentiated after three passages. Morphologically, the cells became cystic with a loss of intracellular Oct-4. We have successfully adapted and cultured undifferentiated HES cells on three human feeder lines for >30 passages. No difficulties were observed with the exception of serum in the media. This study reveals a safe and accessible source for feeders for HES cell research and potential therapeutic applications.  相似文献   

16.
17.
18.
Embryonic and adult fibroblasts can be returned to pluripotency by the expression of reprogramming genes. Multiple lines of evidence suggest that these human induced pluripotent stem (hiPS) cells and human embryonic stem (hES) cells are behaviorally, karyotypically, and morphologically similar. Here we sought to determine whether the physical properties of hiPS cells, including their micromechanical properties, are different from those of hES cells. To this end, we use the method of particle tracking microrheology to compare the viscoelastic properties of the cytoplasm of hES cells, hiPS cells, and the terminally differentiated parental human fibroblasts from which our hiPS cells are derived. Our results indicate that although the cytoplasm of parental fibroblasts is both viscous and elastic, the cytoplasm of hiPS cells does not exhibit any measurable elasticity and is purely viscous over a wide range of timescales. The viscous phenotype of hiPS cells is recapitulated in parental cells with disassembled actin filament network. The cytoplasm of hES cells is predominantly viscous but contains subcellular regions that are also elastic. This study supports the hypothesis that intracellular elasticity correlates with the degree of cellular differentiation and reveals significant differences in the mechanical properties of hiPS cells and hES cells. Because mechanical stimuli have been shown to mediate the precise fate of differentiating stem cells, our results support the concept that stem cell “softness” is a key feature of force-mediated differentiation of stem cells and suggest there may be subtle functional differences between force-mediated differentiation of hiPS cells and hES cells.  相似文献   

19.
20.
Cheong HS  Lee HC  Park BL  Kim H  Jang MJ  Han YM  Kim SY  Kim YS  Shin HD 《BMB reports》2010,43(12):830-835
Epigenetic modification of the genome through DNA methylation is the key to maintaining the differentiated state of human embryonic stem cells (hESCs), and it must be reset during differentiation by retinoic acid (RA) treatment. A genome-wide methylation/gene expression assay was performed in order to identify epigenetic modifications of RA-treated hESCs. Between undifferentiated and RA-treated hESCs, 166 differentially methylated CpG sites and 2,013 differentially expressed genes were discovered. Combined analysis of methylation and expression data revealed that 19 genes (STAP2, VAMP8, C10orf26, WFIKKN1, ELF3, C1QTNF6, C10orf10, MRGPRF, ARSE, LSAMP, CENTD3, LDB2, POU5F1, GSPT2, THY1, ZNF574, MSX1, SCMH1, and RARB) were highly correlated with each other. The results provided in this study will facilitate future investigations into the interplay between DNA methylation and gene expression through further functional and biological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号