首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Focal adhesions are specialized regions of the cell surface where integrin receptors and associated proteins link the extracellular matrix to the actin cytoskeleton. To define the cellular role of the focal adhesion protein zyxin, we characterized the phenotype of fibroblasts in which the zyxin gene was deleted by homologous recombination. Zyxin-null fibroblasts display enhanced integrin-dependent adhesion and are more migratory than wild-type fibroblasts, displaying reduced dependence on extracellular matrix cues. We identified differences in the profiles of 75- and 80-kD tyrosine-phosphorylated proteins in the zyxin-null cells. Tandem array mass spectrometry identified both modified proteins as isoforms of the actomyosin regulator caldesmon, a protein known to influence contractility, stress fiber formation, and motility. Zyxin-null fibroblasts also show deficits in actin stress fiber remodeling and exhibit changes in the molecular composition of focal adhesions, most notably by severely reduced accumulation of Ena/VASP proteins. We postulate that zyxin cooperates with Ena/VASP proteins and caldesmon to influence integrin-dependent cell motility and actin stress fiber remodeling.  相似文献   

2.
The movement of a metazoan cell entails the regulated creation and turnover of adhesions with the surface on which it moves. Adhesion sites form as a result of signaling between the extracellular matrix on the outside and the actin cytoskeleton on the inside, and they are associated with specific assembles of actin filaments. Two broad categories of adhesion sites can be distinguished: (1) "focal complexes" associated with lamellipodia and filopodia that support protrusion and traction at the cell front; and (2) "focal adhesions" at the termini of stress fibre bundles that serve in longer term anchorage. Focal complexes are signaled via Rac1 or Cdc42 and can either turnover on a minute scale or differentiate, via intervention of the RhoA pathway, into longer-lived focal adhesions. All classes of adhesion sites depend on the stress in the actin cytoskeleton for their formation and maintenance. Different cell types use different adhesion strategies to move, in terms of the relative engagement of filopodia and lamellipodia in focal complex formation and protrusion and the extent of focal adhesion formation. These differences can be attributed to variations in the relative activities of Rho family members. However, the Rho GTPases alone are unable to signal asymmetry in the actin cytoskeleton, necessary for polarisation and movement. Polarisation requires the collaboration of the microtubule cytoskeleton. Changes in the polymerisation state of microtubules influences the activities of both Rac1 and RhoA and microtubules interact directly with adhesion foci and promote their turnover. Possible mechanisms of cross-talk between the microtubule and actin cytoskeletons in determining polarity are discussed.  相似文献   

3.
Cells respond to fluid shear stress through dynamic processes involving changes in actomyosin and other cytoskeletal stresses, remodeling of cell adhesions, and cytoskeleton reorganization. In this study we simultaneously measured focal adhesion dynamics and cytoskeletal stress and reorganization in MDCK cells under fluid shear stress. The measurements used co-expression of fluorescently labeled paxillin and force sensitive FRET probes of α-actinin. A shear stress of 0.74 dyn/cm2 for 3 hours caused redistribution of cytoskeletal tension and significant focal adhesion remodeling. The fate of focal adhesions is determined by the stress state and stability of the linked actin stress fibers. In the interior of the cell, the mature focal adhesions disassembled within 35-40 min under flow and stress fibers disintegrated. Near the cell periphery, the focal adhesions anchoring the stress fibers perpendicular to the cell periphery disassembled, while focal adhesions associated with peripheral fibers sustained. The diminishing focal adhesions are coupled with local cytoskeletal stress release and actin stress fiber disassembly whereas sustaining peripheral focal adhesions are coupled with an increase in stress and enhancement of actin bundles. The results show that flow induced formation of peripheral actin bundles provides a favorable environment for focal adhesion remodeling along the cell periphery. Under such condition, new FAs were observed along the cell edge under flow. Our results suggest that the remodeling of FAs in epithelial cells under flow is orchestrated by actin cytoskeletal stress redistribution and structural reorganization.  相似文献   

4.
Birth is followed by remodelling of the actin cytoskeleton of pulmonary arterial smooth muscle cells, then by extracellular matrix deposition. Hypothesising that the cell/matrix adhesions would also be remodelled, we investigated the expression, localisation and biochemical characteristics of the focal adhesion protein paxillin in vivo, in vessels from normal and pulmonary hypertensive neonatal piglets. Initially we showed that in intact porcine pulmonary arteries exposed to cytochalasin D there was a reduction filamentous actin accompanied by a reduction in paxillin-associated focal adhesions, similar to that seen in cultured pulmonary arterial smooth muscle cells. Vessels from normal and hypoxic animals were found to have two isoforms of paxillin, of 60 and 66 kDa with pI values of 6.7-4.2. Transient changes occurred during the first 14 days of life. Between birth and 6 days there was a reduction in the amount of both paxillin isoforms, a shift to more acidic pI values and an increase in paxillin phosphorylation. Simultaneously, immunostaining showed a transient reduction in paxillin expression, a change temporally and spatially associated with a previously demonstrated reduction in actin. Findings are consistent with an immediate postnatal spatial reorganisation of paxillin-associated focal adhesions. Paxillin content and remodelling was abnormal in pulmonary hypertensive arteries, the response varying according to postnatal age.  相似文献   

5.
Lasp-2 binds to actin filaments and concentrates in the actin bundles of filopodia and lamellipodia in neural cells and focal adhesions in fibroblastic cells. Lasp-2 has three structural regions: a LIM domain, a nebulin-repeat region, and an SH3 domain; however, the region(s) responsible for its interactions with actin filaments and focal adhesions are still unclear. In this study, we revealed that the N-terminal fragment from the LIM domain to the first nebulin-repeat module (LIM-n1) retained actin-binding activity and showed a similar subcellular localization to full-length lasp-2 in neural cells. The LIM domain fragment did not interact with actin filaments or localize to actin filament bundles. In contrast, LIM-n1 showed a clear subcellular localization to filopodial actin bundles. Although truncation of the LIM domain caused the loss of F-actin binding activity and the accumulation of filopodial actin bundles, these truncated fragments localized to focal adhesions. These results suggest that lasp-2 interactions with actin filaments are mediated through the cooperation of the LIM domain and the first nebulin-repeat module in vitro and in vivo. Actin filament binding activity may be a major contributor to the subcellular localization of lasp-2 to filopodia but is not crucial for lasp-2 recruitment to focal adhesions.  相似文献   

6.
Cell adhesion to the extracellular matrix triggers the formation of integrin-mediated contact and reorganization of the actin cytoskeleton. Examination of nascent adhesions, formed during early stages of fibroblast spreading, reveals a variety of forms of actin-associated matrix adhesions. These include: (1). small ( approximately 1 microm), dot-like, integrin-, vinculin-, paxillin-, and phosphotyrosine-rich structures, with an F-actin core, broadly distributed over the ventral surfaces of the cells; (2). integrin-, vinculin-, and paxillin-containing "doublets" interconnected by short actin bundles; (3). arrays of actin-vinculin complexes. Such structures were formed by freshly plated cells, as well as by cells recovering from latrunculin treatment. Time-lapse video microscopy of such cells, expressing GFP-actin, indicated that long actin cables are formed by an end-to-end lining-up and apparent fusion of short actin bundles. All these structures were prominent during cell spreading, and persisted for up to 30-60 min after plating. Upon longer incubation, they were gradually replaced by stress fibers, associated with focal adhesions at the cell periphery. Direct examination of paxillin and actin reorganization in live cells revealed alignment of paxillin doublets, forming long and highly dynamic actin bundles, undergoing translocation, shortening, splitting, and convergence. The mechanisms underlying the assembly and reorganization of actin-associated focal adhesions and the involvement of mechanical forces in regulating their dynamic properties are discussed.  相似文献   

7.
Cells respond to fluid shear stress through dynamic processes involving changes in actomyosin and other cytoskeletal stresses, remodeling of cell adhesions, and cytoskeleton reorganization. In this study we simultaneously measured focal adhesion dynamics and cytoskeletal stress and reorganization in MDCK cells under fluid shear stress. The measurements used co-expression of fluorescently labeled paxillin and force sensitive FRET probes of α-actinin. A shear stress of 0.74 dyn/cm2 for 3 hours caused redistribution of cytoskeletal tension and significant focal adhesion remodeling. The fate of focal adhesions is determined by the stress state and stability of the linked actin stress fibers. In the interior of the cell, the mature focal adhesions disassembled within 35-40 min under flow and stress fibers disintegrated. Near the cell periphery, the focal adhesions anchoring the stress fibers perpendicular to the cell periphery disassembled, while focal adhesions associated with peripheral fibers sustained. The diminishing focal adhesions are coupled with local cytoskeletal stress release and actin stress fiber disassembly whereas sustaining peripheral focal adhesions are coupled with an increase in stress and enhancement of actin bundles. The results show that flow induced formation of peripheral actin bundles provides a favorable environment for focal adhesion remodeling along the cell periphery. Under such condition, new FAs were observed along the cell edge under flow. Our results suggest that the remodeling of FAs in epithelial cells under flow is orchestrated by actin cytoskeletal stress redistribution and structural reorganization.  相似文献   

8.
Integrin-mediated substrate adhesion of endothelial cells leads to dynamic rearrangement of the actin cytoskeleton. Protein kinase C (PKC) stimulates reorganization of microfilaments and adhesion, but the mechanism by which this occurs is unknown. Src suppressed C kinase substrate (SSeCKS) is a PKC substrate that may play an important role in regulating actin cytoskeleton. We found that SSeCKS was localized to focal adhesion sites soon after cell adhesion and that SSeCKS translocated from the membrane to the cytosol during the process of cell spreading. Using small interfering RNAs specific to SSeCKS, we show that RPMVEC cells in which SSeCKS expression was inhibited reduce adhesion and spread on LN through blocking the formation of actin stress fibers and focal adhesions. These results demonstrated SSeCKS modulate endothelial cells adhesion and spreading by reorganization of the actin cytoskeleton.  相似文献   

9.
The response of the actin cytoskeleton to nodulation (Nod) factors secreted by Rhizobium etli has been studied in living root hairs of bean (Phaseolus vulgaris) that were microinjected with fluorescein isothiocyanate-phalloidin. In untreated control cells or cells treated with the inactive chitin oligomer, the actin cytoskeleton was organized into long bundles that were oriented parallel to the long axis of the root hair and extended into the apical zone. Upon exposure to R. etli Nod factors, the filamentous actin became fragmented, as indicated by the appearance of prominent masses of diffuse fluorescence in the apical region of the root hair. These changes in the actin cytoskeleton were rapid, observed as soon as 5 to 10 min after application of the Nod factors. It was interesting that the filamentous actin partially recovered in the continued presence of the Nod factor: by 1 h, long bundles had reformed. However, these cells still contained a significant amount of diffuse fluorescence in the apical zone and in the nuclear area, presumably indicating the presence of short actin filaments. These results indicate that Nod factors alter the organization of actin microfilaments in root hair cells, and this could be a prelude for the formation of infection threads.  相似文献   

10.
Integrin-induced adhesion leads to cytoskeletal reorganizations, cell migration, spreading, proliferation, and differentiation. The details of the signaling events that induce these changes in cell behavior are not well understood but they appear to involve activation of Rho family members which activate signaling molecules such as tyrosine kinases, serine/threonine kinases, and lipid kinases. The result is the formation of focal complexes, focal adhesions, and bundles and networks of actin filaments that allow the cell to spread. The present study shows that mu-calpain is active in adherent cells, that it cleaves proteins known to be present in focal complexes and focal adhesions, and that overexpression of mu-calpain increased the cleavage of these proteins, induced an overspread morphology and induced an increased number of stress fibers and focal adhesions. Inhibition of calpain with membrane permeable inhibitors or by expression of a dominant negative form of mu-calpain resulted in an inability of cells to spread or to form focal adhesions, actin filament networks, or stress fibers. Cells expressing constitutively active Rac1 could still form focal complexes and actin filament networks (but not focal adhesions or stress fibers) in the presence of calpain inhibitors; cells expressing constitutively active RhoA could form focal adhesions and stress fibers. Taken together, these data indicate that calpain plays an important role in regulating the formation of focal adhesions and Rac- and Rho-induced cytoskeletal reorganizations and that it does so by acting at sites upstream of both Rac1 and RhoA.  相似文献   

11.
The homologous Rho kinases, ROCK1 and ROCK2, are involved in stress fiber assembly and cell adhesion and are assumed to be functionally redundant. Using mouse embryonic fibroblasts (MEFs) derived from ROCK1−/− and ROCK2−/− mice, we have recently reported that they play different roles in regulating doxorubicin-induced stress fiber disassembly and cell detachment: ROCK1 is involved in destabilizing the actin cytoskeleton and cell detachment, whereas ROCK2 is required for stabilizing the actin cytoskeleton and cell adhesion. Here, we present additional insights into the roles of ROCK1 and ROCK2 in regulating stress-induced impairment of cell-matrix and cell-cell adhesion. In response to doxorubicin, ROCK1−/− MEFs showed significant preservation of both focal adhesions and adherens junctions, while ROCK2−/− MEFs exhibited impaired focal adhesions but preserved adherens junctions compared with the wild-type MEFs. Additionally, inhibition of focal adhesion or adherens junction formations by chemical inhibitors abolished the anti-detachment effects of ROCK1 deletion. Finally, ROCK1−/− MEFs, but not ROCK2−/− MEFs, also exhibited preserved central stress fibers and reduced cell detachment in response to serum starvation. These results add new insights into a novel mechanism underlying the anti-detachment effects of ROCK1 deletion mediated by reduced peripheral actomyosin contraction and increased actin stabilization to promote cell-cell and cell-matrix adhesion. Our studies further support the differential roles of ROCK isoforms in regulating stress-induced loss of central stress fibers and focal adhesions as well as cell detachment.  相似文献   

12.
Ubiquitously expressed β-actin and γ-actin isoforms play critical roles in most cellular processes; however, their unique contributions are not well understood. We generated whole-body β-actin-knockout (Actb(-/-)) mice and demonstrated that β-actin is required for early embryonic development. Lethality of Actb(-/-) embryos correlated with severe growth impairment and migration defects in β-actin-knockout primary mouse embryonic fibroblasts (MEFs) that were not observed in γ-actin-null MEFs. Migration defects were associated with reduced membrane protrusion dynamics and increased focal adhesions. We also identified migration defects upon conditional ablation of β-actin in highly motile T cells. Of great interest, ablation of β-actin altered the ratio of globular actin (G-actin) to filamentous actin in MEFs, with corresponding changes in expression of genes that regulate the cell cycle and motility. These data support an essential role for β-actin in regulating cell migration and gene expression through control of the cellular G-actin pool.  相似文献   

13.
RhoGTPases organize the actin cytoskeleton to generate diverse polarities, from front–back polarity in migrating cells to dendritic spine morphology in neurons. For example, RhoA through its effector kinase, RhoA kinase (ROCK), activates myosin II to form actomyosin filament bundles and large adhesions that locally inhibit and thereby polarize Rac1-driven actin polymerization to the protrusions of migratory fibroblasts and the head of dendritic spines. We have found that the two ROCK isoforms, ROCK1 and ROCK2, differentially regulate distinct molecular pathways downstream of RhoA, and their coordinated activities drive polarity in both cell migration and synapse formation. In particular, ROCK1 forms the stable actomyosin filament bundles that initiate front–back and dendritic spine polarity. In contrast, ROCK2 regulates contractile force and Rac1 activity at the leading edge of migratory cells and the spine head of neurons; it also specifically regulates cofilin-mediated actin remodeling that underlies the maturation of adhesions and the postsynaptic density of dendritic spines.  相似文献   

14.
Glomerular permeability for macromolecules depends partially on proper attachment of the glomerular epithelial cells (GEC) to the glomerular basement membrane (GBM). The latter requires integrity of the actin cytoskeleton, which in turn is regulated by specific actin-associated proteins. Since several glomerulopathies characterized by heavy proteinuria are associated with increased glomerular tumor necrosis factor alpha (TNF-alpha) expression, we studied the interaction of TNF-alpha with the actin cytoskeleton of cultured rat GEC. Incubation of GEC with 10 ng/ml TNF-alpha for variable time periods ranging from 15 min to 24 hr demonstrated a marked accentuation and redistribution of actin microfilaments, as shown by direct fluorescence analysis and confocal laser scanning microscopy. Quantitative biochemical determination of the G/total-actin ratio confirmed the above observations. Indeed, this ratio was significantly reduced, indicating substantial polymerization of G-actin and formation of F-actin. Concurrently, TNF-alpha rapidly induced tyrosine phosphorylation of both paxillin and focal adhesion kinase, without affecting the expression levels of these two proteins. In addition, tyrosine phosphorylation of vinculin became evident, indicating involvement of this focal adhesion marker in the observed actin reorganization. Inhibition of tyrosine phosphorylation by genistein prevented the reorganization of the actin cytoskeleton by TNF-alpha. We conclude that TNF-alpha induces substantial reorganization of actin cytoskeleton and focal adhesions. These effects occur simultaneously, with a prompt TNF-alpha-induced tyrosine phosphorylation of paxillin and focal adhesion kinase, indicating that these proteins, known to regulate actin polymerization and formation of focal adhesions, may be directly involved in the mechanism controlling the observed actin redistribution. These findings suggest that the observed TNF-alpha-actin cytoskeleton interactions may relate to the pathogenesis of glomerulopathies with heavy proteinuria, in which increased glomerular expression of TNF-alpha is associated with disturbances in the attachment of podocytes to the GBM.  相似文献   

15.
Transmembrane adhesion receptors, such as integrins, mediate cell adhesion by interacting with intracellular proteins that connect to the cytoskeleton. Talin, one such linker protein, is essential to connect extracellular matrix-bound integrins to the cytoskeleton. Talin can connect to the cytoskeleton either directly, through its actin-binding motifs, or indirectly, by recruiting other actin-binding proteins. Talin's carboxy-terminal end contains a well-characterized actin-binding domain (ABD). We tested the role of the C-terminal ABD of talin in integrin function in Drosophila. We found that introduction of mutations that reduced actin binding in vitro into the isolated C-terminal Talin-ABD impaired actin binding in vivo. Moreover, when engineered into full-length talin, these mutations disrupted a subset of integrin-mediated adhesion-dependent developmental events. Specifically, morphogenetic processes that involve dynamic, short-term integrin-mediated adhesion were particularly sensitive to impaired function of the C-terminal Talin-ABD. We propose that during development talin connects integrins to the cytoskeleton in distinct ways in different types of integrin-mediated adhesion: directly in transient adhesions and indirectly in stable long-lasting adhesions. Our results provide insight into how a similar array of molecular components can contribute to diverse adhesive processes throughout development.  相似文献   

16.
Actin stress fibers (SFs) detect and transmit forces to the extracellular matrix through focal adhesions (FAs), and molecules in this pathway determine cellular behavior. Here, we designed two different computational tools to quantify actin SFs and the distribution of actin cytoskeletal proteins within a normalized cellular morphology. Moreover, a systematic cell response comparison between the control cells and those with impaired actin cytoskeleton polymerization was performed to demonstrate the reliability of the tools. Indeed, a variety of proteins that were present within the string beginning at the focal adhesions (vinculin) up to the actin SFs contraction (non-muscle myosin II (NMMII)) were analyzed. Finally, the software used allows for the quantification of the SFs based on the relative positions of FAs. Therefore, it provides a better insight into the cell mechanics and broadens the knowledge of the nature of SFs.  相似文献   

17.
The role of hsp27 as an inhibitor of actin polymerization was considered in the context of the actin cytoskeleton and its relationship with focal adhesion formation. The aim of this study was to evaluate the potential effects of hsp27 on focal adhesion formation as a relevant biological consequence of actin stress fiber formation. When hsp27 was overexpressed in stably transfected cells, cell attachment was delayed and recovery of disrupted stress fibers and focal adhesions was limited. In ROS 17/2.8 cells, heat shock caused the reversible disruption of stress fibers and focal adhesions. The loss of stress fibers and focal adhesions was associated with reduced phosphotyrosine on the focal adhesion kinase (FAK). Microinjection of recombinant 6-His hsp27 and phosphorylated 6-His hsp27 was used to demonstrate that nonphosphorylated hsp27 prevented the recovery of stress fibers and focal adhesions. These results provide in vivo evidence that hsp27 acts as an inhibitor of actin polymerization that can alter cellular interactions with extracellular environments by perturbation of stress fibers, and subsequently focal adhesions.  相似文献   

18.
Recently, a number of two LIM-domain containing proteins (LIMs) have been reported to trigger the formation of actin bundles, a major higher-order cytoskeletal assembly. Here, we analyzed the six Arabidopsis thaliana LIM proteins. Promoter-β-glucuronidase reporter studies revealed that WLIM1, WLIM2a, and WLIM2b are widely expressed, whereas PLIM2a, PLIM2b, and PLIM2c are predominantly expressed in pollen. LIM-green fluorescent protein (GFP) fusions all decorated the actin cytoskeleton and increased actin bundle thickness in transgenic plants and in vitro, although with different affinities and efficiencies. Remarkably, the activities of WLIMs were calcium and pH independent, whereas those of PLIMs were inhibited by high pH and, in the case of PLIM2c, by high [Ca2+]. Domain analysis showed that the C-terminal domain is key for the responsiveness of PLIM2c to pH and calcium. Regulation of LIM by pH was further analyzed in vivo by tracking GFP-WLIM1 and GFP-PLIM2c during intracellular pH modifications. Cytoplasmic alkalinization specifically promoted release of GFP-PLIM2c but not GFP-WLIM1, from filamentous actin. Consistent with these data, GFP-PLIM2c decorated long actin bundles in the pollen tube shank, a region of relatively low pH. Together, our data support a prominent role of Arabidopsis LIM proteins in the regulation of actin cytoskeleton organization and dynamics in sporophytic tissues and pollen.  相似文献   

19.
Highly dynamic integrin-based focal adhesions provide an important structural basis for anchoring the cellular actin cytoskeleton to the surrounding extracellular matrix. The human pathogen Helicobacter pylori (H. pylori) directly targets integrins with drastic consequences on the epithelial cell morphology and migration, which might contribute to the disruption of the gastric epithelium in vivo. In this review, we summarize the recent findings concerning the complex mechanism through which H. pylori interferes with host integrin signaling thereby deregulating focal adhesions and the actin cytoskeleton of motile epithelial cells.  相似文献   

20.
Hemodynamic shear stress regulates endothelial cell biochemical processes that govern cytoskeletal contractility, focal adhesion dynamics, and extracellular matrix (ECM) assembly. Since shear stress causes rapid strain focusing at discrete locations in the cytoskeleton, we hypothesized that shear stress coordinately alters structural dynamics in the cytoskeleton, focal adhesion sites, and ECM on a time scale of minutes. Using multiwavelength four-dimensional fluorescence microscopy, we measured the displacement of rhodamine-fibronectin and green fluorescent protein-labeled actin, vimentin, paxillin, and/or vinculin in aortic endothelial cells before and after onset of steady unidirectional shear stress. In the cytoskeleton, the onset of shear stress increased actin polymerization into lamellipodia, altered the angle of lateral displacement of actin stress fibers and vimentin filaments, and decreased centripetal remodeling of actin stress fibers in subconfluent and confluent cell layers. Shear stress induced the formation of new focal complexes and reduced the centripetal remodeling of focal adhesions in regions of new actin polymerization. The structural dynamics of focal adhesions and the fibronectin matrix varied with cell density. In subconfluent cell layers, shear stress onset decreased the displacement of focal adhesions and fibronectin fibrils. In confluent monolayers, the direction of fibronectin and focal adhesion displacement shifted significantly toward the downstream direction within 1 min after onset of shear stress. These spatially coordinated rapid changes in the structural dynamics of cytoskeleton, focal adhesions, and ECM are consistent with focusing of mechanical stress and/or strain near major sites of shear stress-mediated mechanotransduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号