首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trans-dichlorodiammineplatinum (II) reacts with yeast phenylalanine transfer RNA to yield a major platinum binding site. The tightly bound platinum has been located on the oligonucleotide Gm-A-A-Y-A-ψp containing the anticodon by standard fingerprinting methods using 32P-labelled tRNAPhe. This site corresponds to a single major platinum site identified during an X-ray crystallographic analysis of yeast tRNAPhe. The solution studies have given confidence to the assignment of part of the 3 Å electron density map to the anticodon region of the molecular structure of yeast tRNAPhe.  相似文献   

2.
3.
4.
Two fractions of phenylalanine tRNA (tRNAPhe1 and tRNAPhe2) were purified by BD-cellulose and RPC-5 chromatography of crude tRNA isolated from barley embryos. Successive RPC-5 rechromatography runs of tRNAPhe2 showed its conversion into more stable tRNAPhe1, suggesting that the two fractions have essentially the same primary structure. Both tRNAPhe1 and tRNAPhe2 had about the same acceptor activity, but tRNAPhe2 was aminoacylated much faster than tRNAPhe1. RPC-5 chromatography of crude aminoacylated tRNA showed higher contents of phe-tRNAPhe2 than of phe-tRNAPhe1 but the ratio of these two fractions estimated by relative fluorescence intensity was about 1. Fluorescence spectra of tRNAPhe from barley embryos suggest that it contains Y base similar to Yw from wheat tRNAPhe.  相似文献   

5.
An enzyme was purified from rat liver and leukemic rat spleen which methylates guanosine residues in tRNA to N2-methylguanosine. By sequence analysis of bulk E. coli tRNA methylated with crude extracts it was shown that the enzyme is responsible for about 50% of total m2G formed invitro. The extent of methylation of a number of homogenous tRNA species was measured using the purified enzyme from both sources. Among tested E. coli tRNAs only tRNAArg, tRNAPhe, and tRNAVal yielded significantly more m2G than the bulk tRNA. The Km for tRNAArg in the methylation reaction with enzymes from either tissue was 7.8 × 10−7 M as compared to the value 1 × 10−5 M obtained for the bulk tRNA. In a pancreatic RNase digest of bulk tRNA as well as of pure tRNAArg, tRNAPhe, and tRNAVal, A-m2G-Cp was found to be the only sequence methylated. Thus, the mammalian methyltransferase specifically recognizes the guanylate residue at position 10 from the 5′-end contained in a sequence (s4)U-A-G-Cp. Furthermore, there is no change between the enzyme from normal liver and leukemic spleen in the affinity for tRNA, the methylating capacity, and tRNA site and sequence recognition specificity.  相似文献   

6.
Polyacrylamide and porous-glass supports containing the dihydroxyborylphenyl group can be prepared by a method similar to that used in the synthesis of N-[N′-(m-dihydroxyborylphenyl)succinamyl]aminoethylcellulose. The reaction of aminoethylpolyacrylamide or amino-substituted glass with N-(m-dihydroxyborylphenyl)succinamic acid in the presence of N-cyclohexyl-N′-β-(4-methyl-morpholinium) ethylcarbodiimide yields products which, together with the cellulose derivative, are all capable of binding tRNA dissolved in buffers at pH 8.7. The demonstration that bound tRNA can be released with sorbitol solutions or with low pH buffers, together with studies on the binding of tRNA species that contain chemically modified 3′-terminals, indicate that the predominant binding mechanism consists of cyclic complex formation between the immobilized dihydroxyboryl groups and the 3′-terminal cis-diol groups of the tRNA molecules. Aminoacylated tRNA does not bind under the conditions necessary to bind tRNA and this permits the isolation of specific tRNA isoacceptors. The purification of tRNAPhe and the partial purification of tRNAGlu and tRNATrp are described.  相似文献   

7.
The anticodon sequence is a major recognition element for most aminoacyl-tRNA synthetases. We investigated the in vivo effects of changing the anticodon on the aminoacylation specificity in the example of E. coli tRNAPhe. Constructing different anticodon mutants of E. coli tRNAPhe by site-directed mutagenesis, we isolated 22 anticodon mutant tRNAPhe; the anticodons corresponded to 16 amino acids and an opal stop codon. To examine whether the mutant tRNAs had changed their amino acid acceptor specificity in vivo, we tested the viability of E. coli strains containing these tRNAPhe genes in a medium which permitted tRNA induction. Fourteen mutant tRNA genes did not affect host viability. However, eight mutant tRNA genes were toxic to the host and prevented growth, presumably because the anticodon mutants led to translational errors. Many mutant tRNAs which did not affect host viability were not aminoacylated in vivo. Three mutant tRNAs containing anticodon sequences corresponding to lysine (UUU), methionine (CAU) and threonine (UGU) were charged with the amino acid corresponding to their anticodon, but not with phenylalanine. These three tRNAs and tRNAPhe are located in the same cluster in a sequence similarity dendrogram of total E. coli tRNAs. The results support the idea that such tRNAs arising from in vivo evolution are derived by anticodon change from the same ancestor tRNA.  相似文献   

8.
Yeast tRNAPhe has been labelled with 125I under conditions which conserve the tertiary structure. Significant labelling was only found to occur on specific cytidines in single stranded regions, while other cytidines in single stranded regions and all those in the double stranded region underwent iodination to a very small extent. The pattern obtained from iodine labelling satisfies the conformation of a model recently proposed for this tRNA.  相似文献   

9.
Abstract

NMR spectroscopy was used to determine the solution structures of RNA oligonucleotides comprising the anticodon domain of tRNALys,3. The structural effects of the pseudouridine modification at position 39 were investigated and are well correlated with changes in thermodynamic parameters. The loop conformation differs from that seen in tRNAPhe and provides an explanation of the critical role of modification in this tRNA.  相似文献   

10.
Transfer RNA is an essential molecule for biological system, and each tRNA molecule commonly has a cloverleaf structure. Previously, we experimentally showed that some Drosophila tRNA (tRNAAla, tRNAHis, and tRNAi Met) molecules fit to form another, non-cloverleaf, structure in which the 3'-half of the tRNA molecules forms an alternative hairpin, and that the tRNA molecules are internally cleaved by the catalytic RNA of bacterial ribonuclease P (RNase P). Until now, the hyperprocessing reaction of tRNA has only been reported with Drosophila tRNAs. This time, we applied the hyperprocessing reaction to one of human tRNAs, human tyrosine tRNA, and we showed that this tRNA was also hyperprocessed by E. coli RNase P RNA. This tRNA is the first example for hyperprocessed non-Drosophila tRNAs. The results suggest that the hyperprocessing reaction can be a useful tool to detect destablized tRNA molecules from any species.  相似文献   

11.
The effect of aminoacylation and ternary complex formation with elongation factor Tu•GTP on the tertiary structure of yeast tRNAPhe was examined by 1H-NMR spectroscopy. Esterification of phenylalanine to tRNAPhe does not lead to changes with respect to the secondary and tertiary base pair interactions of tRNA. Complex formation of Phe-tRNAPhe with elongation factor Tu•GTP results in a broadening of all imino proton resonances of the tRNA. The chemical shifts of several NH proton resonances are slightly changed as compared to free tRNA, indicating a minor conformational rearrangement of Phe-tRNAPhe upon binding to elongation factor Tu•GTP. All NH proton resonances corresponding to the secondary and tertiary base pairs of tRNA, except those arising from the first three base pairs in the aminoacyl stem, are detectable in the Phe-tRNAPhe•elongation factor Tu•GTP ternary complex. Thus, although the interactions between elongation factor Tu and tRNA accelerate the rate of NH proton exchange in the aminoacyl stem-region, the Phe-tRNAPhe preserves its typical L-shaped tertiary structure in the complex. At high (> 10−4 M) ligand concentrations a complex between tRNAPhe and elongation factor Tu•GDP can be detected on the NMR time-scale. Formation of this complex is inhibited by the presence of any RNA not related to the tRNA structure. Using the known tertiary structures of yeast tRNAPhe and Thermus thermophilus elongation factor Tu in its active, GTP form, a model of the ternary complex was constructed.  相似文献   

12.
Models of the atomic structure of the eukaryotic translation termination complex containing mRNA, P-site tRNAPhe, human class 1 release factor eRF1, and 80S ribosome, were constructed by computational modeling. The modeling was based on the assumed structural-functional similarity between the tRNA and eFR1 molecules in the ribosomal A site. The known atomic structure of the 70S ribosome complexed with mRNA as well as the P-and A-site tRNAsPhe was used as a structural template for the modeling. The eRF1 molecule bound in the A site undergoes substantial conformational changes so that the mutual configuration of the N and M domains matches the overall tRNA shape. Two models of eRF1 binding to mRNA at the A site in the presence of P-site tRNAPhe were generated. A characteristic of these models is complementary interactions between the mRNA stop codon and the grooves at different sides of the surface of the eRF1 fragment, containing helix α2, NIKS loop, and helix α3 of the N domain. In model 1, the nucleotides of the mRNA stop codon at the A site are approximately equidistant (~15 Å) from the N (motifs NIKS and YxCxxxF) and C domains. In model 2, the stop codon is close to the N-domain motifs NIKS and YxCxxxF. Both models fit genetic and biochemical experimental data. The choice of a particular model requires additional studies.  相似文献   

13.
An X-ray diffraction study of a zinc(II) complex of tRNAPhe from yeast reveals the presence of five zin-binding sites on the tRNA molecule. Two of the cooperatively bound Mg2+ in the native tRNA structure are replaced by Zn2+. The remaining sites involve direct coordination of zinc to the N7 position of tRNA guanine bases, G15, G43 and G45. Thus, zinc displays a high specificity for binding to guanine bases in purine-purine sequences.  相似文献   

14.
15.
16.
17.
Abstract

The anticodon of yeast tRNAAsp, GUC, presents the peculiarity to be self-complementary, with a slight mismatch at the uridine position. In the orthorhombic crystal lattice, tRNAAsp molecules are associated by anticodon-anticodon interactions through a two-fold symmetry axis. The anticodon triplets of symmetrically related molecules are base paired and stacked in a normal helical conformation. A stacking interaction between the anticodon loops of two two-fold related tRNA molecules also exists in the orthorhombic form of yeast tRNAPhe. In that case however the GAA anticodon cannot be base paired. Two characteristic differences can be correlated with the anticodon-anticodon association: the distribution of temperature factors as determined from the X-ray crystallographic refinements and the interaction between T and D loops. In tRNAAsp T and D loops present higher temperature factors than the anticodon loop, in marked contrast to the situation in tRNAPhe. This variation is a consequence of the anticodon-anticodon base pairing which rigidities the anticodon loop and stem. A transfer of flexibility to the corner of the tRNA molecule disrupts the G19-C56 tertiary interactions. Chemical mapping of the N3 position of cytosine 56 and analysis of self-splitting patterns of tRNAAsp substantiate such a correlation.  相似文献   

18.
Phenylalanine-specific tRNA was isolated from human placenta and degraded to mixtures of oligonucleotides. Tritium sequence analysis of the digestion products indicates that the sequence of human placenta tRNAPhe is identical to that of calf liver tRNAPhe and differs only slightly from that of rabbit liver tRNAPhe.  相似文献   

19.
A restriction map of the T4 transfer RNA gene cluster   总被引:4,自引:0,他引:4  
  相似文献   

20.
Pentatricopeptide repeat (PPR) motifs are α-helical structures known for their modular recognition of single-stranded RNA sequences with each motif in a tandem array binding to a single nucleotide. Protein-only RNase P 1 (PRORP1) in Arabidopsis thaliana is an endoribonuclease that uses its PPR domain to recognize precursor tRNAs (pre-tRNAs) as it catalyzes removal of the 5′-leader sequence from pre-tRNAs with its NYN metallonuclease domain. To gain insight into the mechanism by which PRORP1 recognizes tRNA, we determined a crystal structure of the PPR domain in complex with yeast tRNAPhe at 2.85 Å resolution. The PPR domain of PRORP1 bound to the structurally conserved elbow of tRNA and recognized conserved structural features of tRNAs using mechanisms that are different from the established single-stranded RNA recognition mode of PPR motifs. The PRORP1 PPR domain-tRNAPhe structure revealed a conformational change of the PPR domain upon tRNA binding and moreover demonstrated the need for pronounced overall flexibility in the PRORP1 enzyme conformation for substrate recognition and catalysis. The PRORP1 PPR motifs have evolved strategies for protein-tRNA interaction analogous to tRNA recognition by the RNA component of ribonucleoprotein RNase P and other catalytic RNAs, indicating convergence on a common solution for tRNA substrate recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号