首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
RNA silencing can be initiated upon dsRNA accumulation and results in homology-dependent degradation of target RNAs mediated by 21–23 nt small interfering RNAs (siRNAs). These small regulatory RNAs can direct RNA degradation via different routes such as the RdRP/Dicer- and the RNA-induced silencing complex (RISC)-catalysed pathways. The relative contribution of both pathways to degradation of target RNAs is not understood. To gain further insight in the process of target selection and degradation, we analysed production of siRNAs characteristic for Dicer-mediated RNA degradation during silencing of mRNAs and chimeric viral RNAs in protoplasts from plants of a transgenic tobacco silencing model line. We show that small RNA accumulation is limited to silencing target regions during steady-state mRNA silencing. For chimeric viral RNAs, siRNA production appears dependent on pre-established cellular silencing conditions. The observed siRNA accumulation profiles imply that silencing of viral target RNAs in pre-silenced protoplasts occurs mainly via a RISC-mediated pathway, guided by (pre-existing) siRNAs derived from cellular mRNAs. In cells that are not silenced at the time of infection, viral RNA degradation seems to involve Dicer action directly on the viral RNAs. This suggests that the silencing mechanism flexibly deploys different components of the RNA degradation machinery in function of the prevailing silencing status.  相似文献   

3.
4.
RNA沉默在植物生物逆境反应中的作用   总被引:1,自引:0,他引:1  
谢兆辉 《遗传》2010,32(6):561-570
RNA沉默是真核生物共有的基因表达调节机制和防御机制。在植物RNA沉默中, 一些小RNAs, 如微小 RNAs和小干扰RNAs, 在植物防御病毒、细菌或食草动物的反应中具有重要作用。为了抑制宿主的RNA沉默系统, 植物病毒或细菌进化出了在RNA沉默不同阶段起作用的病毒沉默抑制子或细菌沉默抑制子, 来克服寄主的RNA沉默反应。文章就植物RNA沉默、病毒沉默抑制子、细菌沉默抑制子及其相关防御反应的一些新进展做一概述。  相似文献   

5.
6.
Small RNAs in viral infection and host defense   总被引:2,自引:0,他引:2  
Small RNAs are the key mediators of RNA silencing and related pathways in plants and other eukaryotic organisms. Silencing pathways couple the destruction of double-stranded RNA with the use of the resulting small RNAs to target other nucleic acid molecules that contain the complementary sequence. This discovery has revolutionized our ideas about host defense and genetic regulatory mechanisms in eukaryotes. Small RNAs can direct the degradation of mRNAs and single-stranded viral RNAs, the modification of DNA and histones, and the inhibition of translation. Viruses might even use small RNAs to do some targeting of their own to manipulate host gene expression. This review highlights the current understanding and new insights concerning the roles of small RNAs in virus infection and host defense in plants.  相似文献   

7.
8.
Cell-to-cell trafficking of RNA and RNA silencing through plasmodesmata   总被引:1,自引:0,他引:1  
Hyun TK  Uddin MN  Rim Y  Kim JY 《Protoplasma》2011,248(1):101-116
  相似文献   

9.
10.
11.
12.
13.
In plants, RNA silencing is a fundamental regulator of gene expression, heterochromatin formation, suppression of transposable elements, and defense against viruses. The sequence specificity of these processes relies on small noncoding RNA (sRNA) molecules. Although the spreading of RNA silencing across the plant has been recognized for nearly two decades, only recently have sRNAs been formally demonstrated as the mobile silencing signals. Here, we discuss the various types of mobile sRNA molecules, their short- and long-range movement, and their function in recipient cells.RNA silencing is a regulatory mechanism that controls the expression of endogenous genes and exogenous molecular parasites such as viruses, transgenes, and transposable elements. One of the most fascinating aspects of RNA silencing found in plants and invertebrates is its mobile nature—in other words, its ability to spread from the cell where it has been initiated to neighboring cells. This phenomenon relies on the movement of small noncoding RNA molecules (sRNA, 21–24 nucleotides [nt] in length) that provide the sequence specificity of the silencing effects. In plants, there are two major classes of sRNAs: short interfering RNAs (siRNAs) and micro RNAs (miRNAs). These sRNAs are generated by diverse and sometimes interacting biochemical pathways, which may influence their mobility. Movement of plant sRNAs falls into two main categories: cell-to-cell (short-range) and systemic (long-range) movement (Melnyk et al. 2011).  相似文献   

14.
15.
RNA silencing in plants and insects can function as a defence mechanism against invading viruses. RNA silencing-based antiviral defence entails the production of virus-derived small interfering RNAs which guide specific antiviral effector complexes to inactivate viral genomes. As a response to this defence system, viruses have evolved viral suppressors of RNA silencing (VSRs) to overcome the host defence. VSRs can act on various steps of the different silencing pathways. Viral infection can have a profound impact on the host endogenous RNA silencing regulatory pathways; alterations of endogenous short RNA expression profile and gene expression are often associated with viral infections and their symptoms. Here we discuss our current understanding of the main steps of RNA-silencing responses to viral invasion in plants and the effects of VSRs on endogenous pathways. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.  相似文献   

16.
Recent discoveries regarding small RNAs and the mechanisms of gene silencing are providing new opportunities to explore fungal pathogen-host interactions and potential strategies for novel disease control. Plant pathogenic fungi are a constant and major threat to global food security; they represent the largest group of disease-causing agents on crop plants on the planet. An initial understanding of RNA silencing mechanisms and small RNAs was derived from model fungi. Now, new knowledge with practical implications for RNA silencing is beginning to emerge from the study of plant-fungus interactions. Recent studies have shown that the expression of silencing constructs in plants designed on fungal genes can specifically silence their targets in invading pathogenic fungi, such as Fusarium verticillioides, Blumeria graminis and Puccinia striiformis f.sp. tritici. Here, we highlight the important general aspects of RNA silencing mechanisms and emphasize recent findings from plant pathogenic fungi. Strategies to employ RNA silencing to investigate the basis of fungal pathogenesis are discussed. Finally, we address important aspects for the development of fungal-derived resistance through the expression of silencing constructs in host plants as a powerful strategy to control fungal disease.  相似文献   

17.
RNAi has existed at least since the divergence of prokaryotes and eukaryotes. This collection of pathways responds to a diversity of “abberant” RNAs and generally silences or eliminates genes sharing sequence content with the silencing trigger. In the canonical pathway, double-stranded RNAs are processed into small RNAs, which guide effector complexes to their targets by complementary base pairing. Many alternative routes from silencing trigger to small RNA are continuously being uncovered. Though the triggers of the pathway and the mechanisms of small RNA production are many, all RNAi-related mechanisms share Argonaute proteins as the heart of their effector complexes. These can act as self-contained silencing machines, binding directly to small RNAs, carrying out homology-based target recognition, and in some cases cleaving targets using an endogenous nuclease domain. Here, we discuss the diversity of Argonaute proteins from a structural and functional perspective.  相似文献   

18.
19.
王鹏  赵显军  朱国萍 《生命科学》2008,20(5):784-789
RNA沉默(RNA silencing)是真核生物中的一种抵抗外源遗传因子(病毒、转座子或转基因)及调控基凶表达的防御机制。参与植物RNA沉默的酶及蛋白质主要包括6种RNA依赖的RNA聚合酶、4种Dicer-like(DCL)核酸内切酶和10种Argonautes蛋白。植物中4条RNA沉默途径分别由微小RNA(miRNAs)和3种小干扰RNA(siRNAs)介导,包括反式作用siRNAs(ta-siRNAs)、天然反义siRNAs(natsiRNAs)和异染色质siRNAs(hc-siRNAs)。在植物RNA沉默的系统性传播中,由DCL4或DCL2将dsRNAs裁剪为次级SiRNAS,以放大RNA沉默信号和增强沉默效应。  相似文献   

20.
《Fungal Biology Reviews》2013,26(4):172-180
Although extensively cataloged and functionally diverse in plants and animals, the role and targets of small RNAs remain mostly uncharacterized in filamentous fungi. To date, much of the knowledge of small RNAs in filamentous fungi has been derived from studies of a limited group of fungi, most notably in Neurospora crassa. While most of the recently discovered classes of small RNAs appear to be unique to fungi some are commonly found in eukaryotes. It is noteworthy that the RNA silencing protein machinery involved in small RNA biogenesis has also diverged greatly, particularly within filamentous fungi, and may explain the diversity of small RNA classes. In this review, we summarize important classes of eukaryotic small RNAs and provide a current analysis of the RNA silencing machinery based on available fungal genome sequences. Finally, we discuss opportunities for exploiting knowledge of small RNAs and RNA silencing for practical application such as engineering plants resistant to fungal pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号