首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Eosinophilic airway inflammation has successfully been used to tailor anti-inflammatory therapy in chronic obstructive pulmonary disease (COPD). Airway hyperresponsiveness (AHR) by indirect challenges is associated with airway inflammation. We hypothesized that AHR to inhaled mannitol captures eosinophilia in induced sputum in COPD.

Methods

Twenty-eight patients (age 58 ± 7.8 yr, packyears 40 ± 15.5, post-bronchodilator FEV1 77 ± 14.0%predicted, no inhaled steroids ≥4 wks) with mild-moderate COPD (GOLD I-II) completed two randomized visits with hypertonic saline-induced sputum and mannitol challenge (including sputum collection). AHR to mannitol was expressed as response-dose-ratio (RDR) and related to cell counts, ECP, MPO and IL-8 levels in sputum.

Results

There was a positive correlation between RDR to mannitol and eosinophil numbers (r = 0.47, p = 0.03) and level of IL-8 (r = 0.46, p = 0.04) in hypertonic saline-induced sputum. Furthermore, significant correlations were found between RDR and eosinophil numbers (r = 0.71, p = 0.001), level of ECP (r = 0.72, p = 0.001), IL-8 (r = 0.57, p = 0.015) and MPO (r = 0.64, p = 0.007) in sputum collected after mannitol challenge. ROC-curves showed 60% sensitivity and 100% specificity of RDR for >2.5% eosinophils in mannitol-induced sputum.

Conclusions

In mild-moderate COPD mannitol hyperresponsiveness is associated with biomarkers of airway inflammation. The high specificity of mannitol challenge suggests that the test is particularly suitable to exclude eosinophilic airways inflammation, which may facilitate individualized treatment in COPD.

Trial registration

Netherlands Trial Register (NTR): NTR1283  相似文献   

2.

Background

Lung infection by various organisms is a characteristic feature of cystic fibrosis (CF). CFTR genotype effects acquisition of Pseudomonas aeruginosa (Pa), however the effect on acquisition of other infectious organisms that frequently precede Pa is relatively unknown. Understanding the role of CFTR in the acquisition of organisms first detected in patients may help guide symptomatic and molecular-based treatment for CF.

Methods

Lung infection, defined as a single positive respiratory tract culture, was assessed for 13 organisms in 1,381 individuals with CF. Subjects were divided by predicted CFTR function: ''Residual'': carrying at least one partial function CFTR mutation (class IV or V) and ''Minimal'' those who do not carry a partial function mutation. Kaplan-Meier estimates were created to assess CFTR effect on age of acquisition for each organism. Cox proportional hazard models were performed to control for possible cofactors. A separate Cox regression was used to determine whether defining infection with Pa, mucoid Pa or Aspergillus (Asp) using alternative criteria affected the results. The influence of severity of lung disease at the time of acquisition was evaluated using stratified Cox regression methods by lung disease categories.

Results

Subjects with ''Minimal'' CFTR function had a higher hazard than patients with ''Residual'' function for acquisition of 9 of 13 organisms studied (HR ranging from 1.7 to 3.78 based on the organism studied). Subjects with minimal CFTR function acquired infection at a younger age than those with residual function for 12 of 13 organisms (p-values ranging: < 0.001 to 0.017). Minimal CFTR function also associated with younger age of infection when 3 alternative definitions of infection with Pa, mucoid Pa or Asp were employed. Risk of infection is correlated with CFTR function for 8 of 9 organisms in patients with good lung function (>90%ile) but only 1 of 9 organisms in those with poorer lung function (<50%ile).

Conclusions

Residual CFTR function correlates with later onset of respiratory tract infection by a wide spectrum of organisms frequently cultured from CF patients. The protective effect conferred by residual CFTR function is diminished in CF patients with more advanced lung disease.  相似文献   

3.

Background

We have previously shown that NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells are reduced in both numbers and cytotoxicity in peripheral blood. The aim of the present study was to investigate their numbers and function within induced sputum.

Methods

Induced sputum cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD56+ cells (NK and NKT-like cells) were used in an LDH release assay to determine cytotoxicity.

Results

The proportion of NK cells and NKT-like cells in smokers with COPD (COPD subjects) was significantly higher (12.7% and 3%, respectively) than in healthy smokers (smokers) (5.7%, p < 0.01; 1%, p < 0.001) and non-smoking healthy subjects (HNS) (4.2%, p < 0.001; 0.8%, p < 0.01). The proportions of NK cells and NKT-like cells expressing both perforin and granzyme B were also significantly higher in COPD subjects compared to smokers and HNS. CD56+ cells from COPD subjects were significantly more cytotoxic (1414 biological lytic activity) than those from smokers (142.5; p < 0.01) and HNS (3.8; p < 0.001) and were inversely correlated to FEV1. (r = -0.75; p = 0.0098).

Conclusion

We have shown an increased proportion of NK and NKT-like cells in the induced sputum of COPD subjects and have demonstrated that these cells are significantly more cytotoxic in COPD subjects than smokers and HNS.  相似文献   

4.

Background

Macrophages have been implicated in the pathogenesis of COPD. M1 and M2 macrophages constitute subpopulations displaying pro- and anti-inflammatory properties. We hypothesized that smoking cessation affects macrophage heterogeneity in the lung of patients with COPD. Our aim was to study macrophage heterogeneity using the M2-marker CD163 and selected pro- and anti-inflammatory mediators in bronchoalveolar lavage (BAL) fluid and induced sputum from current smokers and ex-smokers with COPD.

Methods

114 COPD patients (72 current smokers; 42 ex-smokers, median smoking cessation 3.5 years) were studied cross-sectionally and underwent sputum induction (M/F 99/15, age 62 ± 8 [mean ± SD] years, 42 (31-55) [median (range)] packyears, post-bronchodilator FEV1 63 ± 9% predicted, no steroids past 6 months). BAL was collected from 71 patients. CD163+ macrophages were quantified in BAL and sputum cytospins. Pro- and anti-inflammatory mediators were measured in BAL and sputum supernatants.

Results

Ex-smokers with COPD had a higher percentage, but lower number of CD163+ macrophages in BAL than current smokers (83.5% and 68.0%, p = 0.04; 5.6 and 20.1 ×104/ml, p = 0.001 respectively). The percentage CD163+ M2 macrophages was higher in BAL compared to sputum (74.0% and 30.3%, p < 0.001). BAL M-CSF levels were higher in smokers than ex-smokers (571 pg/ml and 150 pg/ml, p = 0.001) and correlated with the number of CD163+ BAL macrophages (Rs = 0.38, p = 0.003). No significant differences were found between smokers and ex-smokers in the levels of pro-inflammatory (IL-6 and IL-8), and anti-inflammatory (elafin, and Secretory Leukocyte Protease Inhibitor [SLPI]) mediators in BAL and sputum.

Conclusions

Our data suggest that smoking cessation partially changes the macrophage polarization in vivo in the periphery of the lung towards an anti-inflammatory phenotype, which is not accompanied by a decrease in inflammatory parameters.  相似文献   

5.

Background

Chronic obstructive pulmonary disease (COPD) is a common respiratory disorder for which new diagnostic and therapeutic approaches are required. Hallmarks of COPD are matrix destruction and neutrophilic airway inflammation in the lung. We have previously described two tri-peptides, N-α-PGP and PGP, which are collagen fragments and neutrophil chemoattractants. In this study, we investigate if N-α-PGP and PGP are biomarkers and potential therapeutic targets for COPD.

Methods

Induced sputum samples from COPD patients, healthy controls and asthmatics were examined for levels of N-α-PGP and PGP using mass spectrometry and for the ability to generate PGP de novo from collagen. Proteases important in PGP generation in the lung were identified by the use of specific inhibitors in the PGP generation assay and by instillation of proteases into mouse lungs. Serum levels of PGP were compared between COPD patients and controls.

Results

N-α-PGP was detected in most COPD sputum samples but in no asthmatics or controls. PGP was detected in a few controls and in all COPD sputum samples, where it correlated with levels of myeloperoxidase. COPD sputum samples had the ability to generate N-α-PGP and PGP de novo from collagen. PGP generation by COPD sputum was blocked by inhibitors of matrix metalloproteases (MMP''s) 1 and 9 and prolyl endopeptidase. MMP''s 1 and 9 and prolyl endopeptidase acted synergistically to generate PGP in vivo when instilled into mouse lungs. Serum levels of PGP were also significantly higher in COPD patients than in controls

Conclusion

N-α-PGP and PGP may represent novel diagnostic tests and biomarkers for COPD. Inhibition of this pathway may provide novel therapies for COPD directed at the chronic, neutrophilic, airway inflammation which underlies disease progression.  相似文献   

6.

Background

The aim of the study was to investigate how the expression of adhesion molecules changes as neutrophils migrate from the circulation to the lung and if these changes differ between non-smoking subjects and smokers with and without COPD.

Methods

Non-smoking healthy subjects (n=22), smokers without (n=21) and with COPD (n=18) were included. Neutrophils from peripheral blood, sputum and bronchial biopsies were analysed for cell surface expression of adhesion molecules (CD11b, CD62L, CD162). Serum, sputum supernatant and BAL-fluid were analysed for soluble adhesion molecules (ICAM-1, -3, E-selectin, P-selectin, VCAM-1, PECAM-1).

Results

Expression of CD11b was increased on circulating neutrophils from smokers with COPD. It was also increased on sputum neutrophils in both smokers groups, but not in non-smokers, as compared to circulating neutrophils.Serum ICAM-1 was higher in the COPD group compared to the other two groups (p<0.05) and PECAM-1 was lower in smokers without COPD than in non-smoking controls and the COPD group (p<0.05). In BAL-fluid ICAM-1 was lower in the COPD group than in the other groups (p<0.05).

Conclusions

Thus, our data strongly support the involvement of a systemic component in COPD and demonstrate that in smokers neutrophils are activated to a greater extent at the point of transition from the circulation into the lungs than in non-smokers.  相似文献   

7.

Background

We analyzed serial concentrations of multiple inflammatory mediators from serum and induced sputum obtained from patients with stable COPD and controls. The objective was to determine which proteins could be used as reliable biomarkers to assess COPD disease state and severity.

Methods

Forty-two subjects; 21 with stable COPD and 21 controls, were studied every 2 weeks over a 6-week period. Serum and induced sputum were obtained at each of 3 visits and concentrations of 19 serum and 22 sputum proteins were serially assessed using multiplex immunoassays. We used linear mixed effects models to test the distribution of proteins for an association with COPD and disease severity. Measures of within- and between-subject coefficients of variation were calculated for each of the proteins to assess reliability of measurement.

Results

There was significant variability in concentrations of all inflammatory proteins over time, and variability was greater for sputum proteins (median intra-subject coefficient of variation 0.58) compared to proteins measured in serum (median intra-subject coefficient of variation 0.32, P = 0.03). Of 19 serum proteins and 22 sputum proteins tested, only serum CRP, myeloperoxidase and VEGF and sputum IL-6, IL-8, TIMP-1, and VEGF showed acceptable intra and inter-patient reliability and were significantly associated with COPD, the severity of lung function impairment, and dyspnea.

Conclusions

Levels of many serum and sputum biomarkers cannot be reliably ascertained based on single measurements. Multiple measurements over time can give a more reliable and precise estimate of the inflammatory burden in clinically stable COPD patients.  相似文献   

8.

Background

Acute exacerbations contribute to the morbidity and mortality associated with chronic obstructive pulmonary disease (COPD). This proof-of-concept study evaluates whether intermittent pulsed moxifloxacin treatment could reduce the frequency of these exacerbations.

Methods

Stable patients with COPD were randomized in a double-blind, placebo-controlled trial to receive moxifloxacin 400 mg PO once daily (N = 573) or placebo (N = 584) once a day for 5 days. Treatment was repeated every 8 weeks for a total of six courses. Patients were repeatedly assessed clinically and microbiologically during the 48-week treatment period, and for a further 24 weeks'' follow-up.

Results

At 48 weeks the odds ratio (OR) for suffering an exacerbation favoured moxifloxacin: per-protocol (PP) population (N = 738, OR 0.75, 95% confidence interval (CI) 0.565-0.994, p = 0.046), intent-to-treat (ITT) population (N = 1149, OR 0.81, 95% CI 0.645-1.008, p = 0.059), and a post-hoc analysis of per-protocol (PP) patients with purulent/mucopurulent sputum production at baseline (N = 323, OR 0.55, 95% CI 0.36-0.84, p = 0.006).There were no significant differences between moxifloxacin and placebo in any pre-specified efficacy subgroup analyses or in hospitalization rates, mortality rates, lung function or changes in St George''s Respiratory Questionnaire (SGRQ) total scores. There was, however, a significant difference in favour of moxifloxacin in the SGRQ symptom domain (ITT: -8.2 vs -3.8, p = 0.009; PP: -8.8 vs -4.4, p = 0.006). Moxifloxacin treatment was not associated with consistent changes in moxifloxacin susceptibility. There were more treatment-emergent, drug related adverse events with moxifloxacin vs placebo (p < 0.001) largely due to gastrointestinal events (4.7% vs 0.7%).

Conclusions

Intermittent pulsed therapy with moxifloxacin reduced the odds of exacerbation by 20% in the ITT population, by 25% among the PP population and by 45% in PP patients with purulent/mucopurulent sputum at baseline. There were no unexpected adverse events and there was no evidence of resistance development.

Trial registration

ClinicalTrials.gov number, NCT00473460 (ClincalTrials.gov).  相似文献   

9.

Background

T helper 17 (Th17) cells can recruit neutrophils to inflammatory sites through production of IL-17, which induces chemokine release. IL-23 is an important inducer of IL-17 and IL-22 production. Our aim was to study the role of Th17 cells in cystic fibrosis (CF) lung disease by measuring IL-17 protein and mRNA levels and IL-22 and IL-23 mRNA in sputum of clinically stable CF patients and by comparing these levels with healthy controls.

Methods

Sputum induction was performed in adult CF patients outside of an exacerbation and healthy control subjects. IL-17A protein levels were measured in supernatants with cytometric bead array (CBA) and RNA was isolated and quantitative RT-PCR was performed for IL-17A, IL-22 and IL-23.

Results

We found significantly higher levels of IL-17A protein and mRNA levels (both: p < 0.0001) and IL-23 mRNA levels (p < 0.0001) in the sputum of CF group as compared to controls. We found very low levels of IL-22 mRNA in the CF group. The levels of IL-17 and IL-23 mRNA were higher in patients chronically infected with Pseudomonas aeruginosa (P. aeruginosa) as compared to those who were not chronically infected with P. aeruginosa. The presence of Staphylococcus aureus (S. aureus) on sputum did not affect the IL-17 or IL-23 levels. There was no correlation between IL-17 or IL-23 levels and FEV1 nor sputum neutrophilia.

Conclusion

The elevated levels of IL-17 and IL-23 might indicate that Th17 cells are implicated in the persistent neutrophil infiltration in CF lung disease and chronic infection with P. aeruginosa.  相似文献   

10.

Background

Microparticles (MPs) are membrane vesicles released during cell activation and apoptosis. MPs have different biological effects depending on the cell from they originate. Cystic fibrosis (CF) lung disease is characterized by massive neutrophil granulocyte influx in the airways, their activation and eventually apoptosis. We investigated on the presence and phenotype of MPs in the sputum, a rich non-invasive source of inflammation biomarkers, of acute and stable CF adult patients.

Methods

Spontaneous sputum, obtained from 21 CF patients (10 acute and 11 stable) and 7 patients with primary ciliary dyskinesia (PCD), was liquefied with Sputasol. MPs were counted, visualized by electron microscopy, and identified in the supernatants of treated sputum by cytofluorimetry and immunolabelling for leukocyte (CD11a), granulocyte (CD66b), and monocyte-macrophage (CD11b) antigens.

Results

Electron microscopy revealed that sputum MPs were in the 100-500 nm range and did not contain bacteria, confirming microbiological tests. CF sputa contained higher number of MPs in comparison with PCD sputa. Levels of CD11a+-and CD66b+-, but not CD11b+-MPs were significantly higher in CF than in PCD, without differences between acute and stable patients.

Conclusions

In summary, MPs are detectable in sputa obtained from CF patients and are predominantly of granulocyte origin. This novel isolation method for MPs from sputum opens a new opportunity for the study of lung pathology in CF.  相似文献   

11.

Background

Sputum induction is a non-invasive method for obtaining measurements of inflammation in the airways. Whether spontaneously sampled sputum can be a valid surrogate is unknown. The aim of this study was to compare levels of six inflammatory markers in sputum pairs consisting of induced and spontaneous sputum sampled on the same consultation either in a stable state or during exacerbations of chronic obstructive pulmonary disease (COPD).

Methods

433 COPD patients aged 40–76, Global initiative for chronic Obstructive Lung Disease (GOLD) stage II-IV were enrolled in 2006/07 and followed every six months for three years. 356 patients were followed for potential exacerbations. Interleukin-6, interleukin-8, interleukin-18, interferon gamma-inducible protein-10, monokine induced by gamma interferon and tumor necrosis factor-alpha (IL-6, IL-8, IL-18, IP-10, MIG and TNF-α) were measured by bead based multiplex immunoassay in 60 paired sputum samples from 45 patients. Albumin was measured by enzyme immunoassay, for concentration correction. Culturing for bacterial growth was performed on 24 samples. Bland-Altman plots were used to assess agreement. The paired non-parametric Wilcoxon signed-rank test, the non-parametric Spearman’s rank correlation test and Kruskal-Wallis test were used for statistical analyses. For all analyses, a p-value < 0.05 was considered significant.

Results

Agreement between the two measurements was generally low for all six markers. TNF-α was significantly higher in spontaneous sputum at exacerbations (p = 0.002) and trending higher at the steady state (p = 0.06). Correlation coefficients between the levels of markers in induced and spontaneous sputum varied between 0.58 (IL-18) to 0.83 (IP-10). In spontaneous sputum IL-18 and MIG were higher in ex-smokers (p < 0.05). The levels of all markers were higher in GOLD stage III & IV except for IL-6 in spontaneous sputum and IL-18 in induced sputum, compared with GOLD stage II, although not statistically significant. In spontaneous sputum the levels of IL-6 were significantly higher if Haemophilus influenzae (HI) was not cultured.

Conclusion

We observed a low agreement and significant differences in inflammatory markers between induced and spontaneous sputum, both at steady state and exacerbations. We recommend considering sampling method when reporting on inflammatory markers in sputum.  相似文献   

12.

Background

Non-invasive phenotyping of chronic respiratory diseases would be highly beneficial in the personalised medicine of the future. Volatile organic compounds can be measured in the exhaled breath and may be produced or altered by disease processes. We investigated whether distinct patterns of these compounds were present in chronic obstructive pulmonary disease (COPD) and clinically relevant disease phenotypes.

Methods

Breath samples from 39 COPD subjects and 32 healthy controls were collected and analysed using gas chromatography time-of-flight mass spectrometry. Subjects with COPD also underwent sputum induction. Discriminatory compounds were identified by univariate logistic regression followed by multivariate analysis: 1. principal component analysis; 2. multivariate logistic regression; 3. receiver operating characteristic (ROC) analysis.

Results

Comparing COPD versus healthy controls, principal component analysis clustered the 20 best-discriminating compounds into four components explaining 71% of the variance. Multivariate logistic regression constructed an optimised model using two components with an accuracy of 69%. The model had 85% sensitivity, 50% specificity and ROC area under the curve of 0.74. Analysis of COPD subgroups showed the method could classify COPD subjects with far greater accuracy. Models were constructed which classified subjects with ≥2% sputum eosinophilia with ROC area under the curve of 0.94 and those having frequent exacerbations 0.95. Potential biomarkers correlated to clinical variables were identified in each subgroup.

Conclusion

The exhaled breath volatile organic compound profile discriminated between COPD and healthy controls and identified clinically relevant COPD subgroups. If these findings are validated in prospective cohorts, they may have diagnostic and management value in this disease.  相似文献   

13.

Background

Haemophilus influenzae is the most common colonizing bacteria of the bronchial tree in chronic obstructive pulmonary disease (COPD), and positive cultures for this potentially pathogenic microorganism (PPM) has been associated with local inflammation changes that may influence the relationships between H. influenzae and the bronchial mucosa.

Methods

A cross-sectional analysis of stable COPD patients enrolled in the Phenotype and Course of Chronic Obstructive Pulmonary Disease (PAC-COPD) Study, focusing on bronchial colonization by H. influenzae, was performed. Specific IgA against the PPM was measured by optical density, and metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) using ELISA in sputum samples. Levels in patients colonized by H. influenzae and non-colonized patients were compared.

Results

Sputum supernatant for the measurement of specific IgA against H. influenzae was available from 54 stable COPD patients, who showed levels of specific IgA significantly lower in colonized (n=21) than in non-colonized patients (n=33) (15 [4-37] versus 31 [10-75], p=0.033, Mann-Whitney U test). Proenzyme MMP-9 was measured in 44 patients, and it was higher in colonized (n=12, 1903 [1488-6699] ng/ml) than in non-colonized patients (n=32, 639 [373-972] ng/ml) (p<0.001, Mann-Whitney U test). Active form of MMP-9 was also higher in colonized (126 [25-277] ng/ml) than in non-colonized patients (39 [14-68] ng/ml) (p=0.021, Mann-Whitney U test), and the molar ratio between proenzyme MMP-9 and TIMP-1 was above 1 (2.1 [0.1-12.5]) in colonized patients, significantly higher than the ratio found in non-colonized patients (0.2 [0.08-0.5]) (p=0.030, Mann-Whitney U test).

Conclusions

Clinically stable COPD patients colonized by H. influenzae had lower levels of specific IgA against the microorganism and higher values of the active form of MMP-9 in their sputum supernatant than non-colonized patients. Bronchial colonization by H. influenzae may cause structural changes in the extracellular matrix through a defective defense and the production of active metalloproteinases.  相似文献   

14.
15.

Background

Airway inflammation in COPD can be measured using biomarkers such as induced sputum and FeNO. This study set out to explore the heterogeneity of COPD using biomarkers of airway and systemic inflammation and pulmonary function by principal components analysis (PCA).

Subjects and Methods

In 127 COPD patients (mean FEV1 61%), pulmonary function, FeNO, plasma CRP and TNF-α, sputum differential cell counts and sputum IL8 (pg/ml) were measured. Principal components analysis as well as multivariate analysis was performed.

Results

PCA identified four main components (% variance): (1) sputum neutrophil cell count and supernatant IL8 and plasma TNF-α (20.2%), (2) Sputum eosinophils % and FeNO (18.2%), (3) Bronchodilator reversibility, FEV1 and IC (15.1%) and (4) CRP (11.4%). These results were confirmed by linear regression multivariate analyses which showed strong associations between the variables within components 1 and 2.

Conclusion

COPD is a multi dimensional disease. Unrelated components of disease were identified, including neutrophilic airway inflammation which was associated with systemic inflammation, and sputum eosinophils which were related to increased FeNO. We confirm dissociation between airway inflammation and lung function in this cohort of patients.  相似文献   

16.

Background

Bacterial colonisation in chronic obstructive pulmonary disease (COPD) contributes to airway inflammation and modulates exacerbations. We assessed risk factors for bacterial colonisation in COPD.

Methods

Patients with stable COPD consecutively recruited over 1 year gave consent to provide a sputum sample for microbiologic analysis. Bronchial colonisation by potentially pathogenic microorganisms (PPMs) was defined as the isolation of PPMs at concentrations of ≥102 colony-forming units (CFU)/mL on quantitative bacterial culture. Colonised patients were divided into high (>105 CFU/mL) or low (<105 CFU/mL) bacterial load.

Results

A total of 119 patients (92.5% men, mean age 68 years, mean forced expiratory volume in one second [FEV1] [% predicted] 46.4%) were evaluated. Bacterial colonisation was demonstrated in 58 (48.7%) patients. Patients with and without bacterial colonisation showed significant differences in smoking history, cough, dyspnoea, COPD exacerbations and hospitalisations in the previous year, and sputum colour. Thirty-six patients (62% of those colonised) had a high bacterial load. More than 80% of the sputum samples with a dark yellow or greenish colour yielded PPMs in culture. In contrast, only 5.9% of white and 44.7% of light yellow sputum samples were positive (P < 0.001). Multivariate analysis showed an increased degree of dyspnoea (odds ratio [OR] = 2.63, 95% confidence interval [CI] 1.53-5.09, P = 0.004) and a darker sputum colour (OR = 4.11, 95% CI 2.30-7.29, P < 0.001) as factors associated with the presence of PPMs in sputum.

Conclusions

Almost half of our population of ambulatory moderate to very severe COPD patients were colonised with PPMs. Patients colonised present more severe dyspnoea, and a darker colour of sputum allows identification of individuals more likely to be colonised.  相似文献   

17.

Background

COPD exacerbations are associated with neutrophilic airway inflammation. Adhesion molecules on the surface of neutrophils may play a key role in their movement from blood to the airways. We analysed adhesion molecule expression on blood and sputum neutrophils from COPD subjects and non-obstructed smokers during experimental rhinovirus infections.

Methods

Blood and sputum were collected from 9 COPD subjects and 10 smoking and age-matched control subjects at baseline, and neutrophil expression of the adhesion molecules and activation markers measured using flow cytometry. The markers examined were CD62L and CD162 (mediating initial steps of neutrophil rolling and capture), CD11a and CD11b (required for firm neutrophil adhesion), CD31 and CD54 (involved in neutrophil transmigration through the endothelial monolayer) and CD63 and CD66b (neutrophil activation markers). Subjects were then experimentally infected with rhinovirus-16 and repeat samples collected for neutrophil analysis at post-infection time points.

Results

At baseline there were no differences in adhesion molecule expression between the COPD and non-COPD subjects. Expression of CD11a, CD31, CD62L and CD162 was reduced on sputum neutrophils compared to blood neutrophils. Following rhinovirus infection expression of CD11a expression on blood neutrophils was significantly reduced in both subject groups. CD11b, CD62L and CD162 expression was significantly reduced only in the COPD subjects. Blood neutrophil CD11b expression correlated inversely with inflammatory markers and symptom scores in COPD subjects.

Conclusion

Following rhinovirus infection neutrophils with higher surface expression of adhesion molecules are likely preferentially recruited to the lungs. CD11b may be a key molecule involved in neutrophil trafficking in COPD exacerbations.  相似文献   

18.

Introduction

The percentage of neutrophils in sputum are increased in COPD patients, and may therefore be a biomarker of airway inflammation. We studied the relationships between sputum neutrophils and FEV1, health status, exacerbation rates, systemic inflammation and emphysema, and long term variability at 1 year.

Methods

Sputum samples were obtained from 488 COPD patients within the ECLIPSE cohort. 359 samples were obtained at baseline, and 297 after 1 year. 168 subjects provided samples at both visits. Serum interleukin-6 (IL-6), IL-8, surfactant protein D and C-reactive protein levels were measured by immunoassays. Low-dose CT scans evaluated emphysema.

Results

Sputum neutrophil % increased with GOLD stage. There was a weak association between % sputum neutrophils and FEV1 % predicted (univariate r2 = 0.025 and 0.094 at baseline and year 1 respectively, p < 0.05 after multivariate regression). Similar weak but significant associations were observed between neutrophil % and health status measured using the St Georges Respiratory Questionairre. There were no associations between neutrophils and exacerbation rates or emphysema. Associations between sputum neutrophils and systemic biomarkers were non-significant or similarly weak. The mean change over 1 year in neutrophil % was an increase of 3.5%.

Conclusions

Sputum neutrophil measurements in COPD are associated weakly with FEV1 % predicted and health status. Sputum neutrophil measurements were dissociated from exacerbation rates, emphysema and systemic inflammation.  相似文献   

19.

Background

The coexistence of COPD and asthma is widely recognized but has not been well described. This study characterizes clinical features, spirometry, and chest CT scans of smoking subjects with both COPD and asthma.

Methods

We performed a cross-sectional study comparing subjects with COPD and asthma to subjects with COPD alone in the COPDGene Study.

Results

119 (13%) of 915 subjects with COPD reported a history of physician-diagnosed asthma. These subjects were younger (61.3 vs 64.7 years old, p = 0.0001) with lower lifetime smoking intensity (43.7 vs 55.1 pack years, p = 0.0001). More African-Americans reported a history of asthma (33.6% vs 15.6%, p < 0.0001). Subjects with COPD and asthma demonstrated worse disease-related quality of life, were more likely to have had a severe COPD exacerbation in the past year, and were more likely to experience frequent exacerbations (OR 3.55 [2.19, 5.75], p < 0.0001). Subjects with COPD and asthma demonstrated greater gas-trapping on chest CT. There were no differences in spirometry or CT measurements of emphysema or airway wall thickness.

Conclusion

Subjects with COPD and asthma represent a relevant clinical population, with worse health-related quality of life. They experience more frequent and severe respiratory exacerbations despite younger age and reduced lifetime smoking history.

Trial registration

ClinicalTrials.gov: NCT00608764  相似文献   

20.

Background

Chronic obstructive pulmonary disease (COPD) is characterised by irreversible airflow obstruction, neutrophilic airway inflammation and chronic bacterial colonisation, however the role of the innate immune response in the pathogenesis of COPD remains unclear.

Methods

Induced sputum was obtained from adults with COPD (n = 22), and healthy controls (n = 29) and was processed for differential cell counts. The sputum supernatant was assayed for innate immune mediators using ELISA, whilst sputum gene expression was measured using real-time PCR. Peripheral blood neutrophils were isolated and their response to lipopolysaccaride (LPS) stimulation was assessed in a subgroup of participants with COPD (n = 13) and healthy controls (n = 21).

Results

Participants with COPD had significantly higher protein levels of interleukin (IL)-8, and neutrophil elastase (NE) and detection of oncostatin M (OSM) compared to healthy controls. Gene expression for toll-like receptor (TLR) 2, IL-8 and OSM were also significantly higher in COPD participants. The level of IL-1β, surfactant protein (SP)-A, matrix metalloproteinase (MMP)-9 and TLR4 mRNA was not significantly different between groups. The level of innate immune response markers were highly associated with the presence of sputum neutrophils, each other and the degree of airflow limitation (FEV1/FVC). Peripheral blood neutrophils from participants with COPD had an increased response to stimulation by LPS; with a greater fold increase in the production of IL-8 and MMP-9 protein, and gene expression of IL-8, TLR2 and TLR4.

Conclusions

The innate immune response is increased in the airways and circulating neutrophils in COPD, and may be an important mechanism involved in disease pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号