首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, we attempt to determine whether lycopene regulates inflammatory mediators in the ovalbumin (OVA)-induced murine asthma model. To address this, mice were sensitized and challenged with OVA, and then treated with lycopene before the last OVA challenge. Administration of lycopene significantly alleviated the OVA-induced airway hyperresponsiveness to inhaled methacholine. Administration of lycopene also resulted in a significant inhibition of the infiltration of inflammatory immunocytes into the bronchoalveolar lavage, and attenuated the gelatinolytic activity of matrix metalloproteinase-9 and the expression of eosinophil peroxidase. Additionally, lycopene reduced the increased levels of GATA-3 mRNA level and IL-4 expression in OVA-challenged mice. However, it increased T-bet mRNA level and IFN-γ expression in lycopene-challenged mice. These findings provide new insight into the immunopharmacological role of lycopene in terms of its effects in a murine model of asthma.  相似文献   

2.
3.
4.
Marine algae have been utilized in food as well as medicine products for a variety of purposes. The purpose of this study was to determine whether an ethanol extract of Polyopes affinis (P.affinis) can inhibit the pathogenesis of T helper 2 (Th2)-mediated allergen-induced airway inflammation in a murine model of asthma. Mice that were sensitized and challenged with ovalbumin (OVA) evidenced typical asthmatic reactions such as the following: an increase in the number of eosinophils in the bronchoalveolar lavage (BAL) fluid; a marked influx of inflammatory cells into the lung around blood vessels and airways as well as the narrowing of the airway luminal; the development of airway hyperresponsiveness (AHR); the presence of pulmonary Th2 cytokines; and the presence of allergenspecific immunoglobulin E (IgE) in the serum. The successive intraperitoneal administration of P. affinis ethanolic extracts before the last airway OVA-challenge resulted in a significant inhibition of all asthmatic reactions. These data suggest that P. affinis ethanolic extracts possess therapeutic potential for the treatment of pulmonary allergic disorders such as allergic asthma.  相似文献   

5.
Thioredoxin (TRX) is a 12-kDa redox (reduction/oxidation)-active protein that has a highly conserved site (-Cys-Gly-Pro-Cys-) and scavenges reactive oxygen species. Here we examined whether exogenously administered TRX modulated airway hyperresponsiveness (AHR) and airway inflammation in a mouse asthma model. Increased AHR to inhaled acetylcholine and airway inflammation accompanied by eosinophilia were observed in OVA-sensitized mice. Administration of wild-type but not 32S/35S mutant TRX strongly suppressed AHR and airway inflammation, and upregulated expression of mRNA of several cytokines (e.g., IL-1alpha, IL-1beta, IL-1 receptor antagonist, and IL-18) in the lungs of OVA-sensitized mice. In contrast, TRX treatment at the time of OVA sensitization did not improve AHR or airway inflammation in OVA-sensitized mice. Thus, TRX inhibited the asthmatic response after sensitization, but did not prevent sensitization itself. TRX and redox-active protein may have clinical benefits in patients with asthma.  相似文献   

6.
Lipid mediators play an important role in modulating inflammatory responses. Platelet-activating factor (PAF) is a potent proinflammatory phospholipid with eosinophil chemotactic activity in vitro and in vivo. We show in this study that mice deficient in PAF receptor exhibited significantly reduced airway hyperresponsiveness to muscarinic cholinergic stimulation in an asthma model. However, PAF receptor-deficient mice developed an eosinophilic inflammatory response at a comparable level to that of wild-type mice. These results indicate an important role for PAF receptor, downstream of the eosinophilic inflammatory cascade, in regulating airway responsiveness after sensitization and aeroallergen challenge.  相似文献   

7.
Paeonol, the main active component isolated from Moutan Cortex, possesses extensive pharmacological activities such as anti-inflammatory, anti-allergic, and immunoregulatory effects. In the present study, we examined the effects of paeonol on airway inflammation and hyperresponsiveness in a mouse model of allergic asthma. BALB/c mice sensitized and challenged with ovalbumin were administered paeonol intragastrically at a dose of 100?mg/kg daily. Paeonol significantly suppressed ovalbumin-induced airway hyperresponsiveness to acetylcholine chloride. Paeonol administration significantly inhibited the total inflammatory cell and eosinophil count in bronchoalveolar lavage fluid. Treatment with paeonol significantly enhanced IFN-γ levels and decreased interleukin-4 and interleukin-13 levels in bronchoalveolar lavage fluid and total immunoglobulin E levels in serum. Histological examination of lung tissue demonstrated that paeonol significantly attenuated allergen-induced lung eosinophilic inflammation and mucus-producing goblet cells in the airway. These data suggest that paeonol exhibits anti-inflammatory activity in allergic mice and may possess new therapeutic potential for the treatment of allergic bronchial asthma.  相似文献   

8.
Although matrix metalloproteinases (MMPs) have been reported to play crucial roles in the migration of inflammatory cells through basement membrane components in vitro, the role of MMPs in the in vivo accumulation of the cells to the site of inflammation in bronchial asthma is still obscure. In this study, we investigated the role of MMPs in the pathogenesis of bronchial asthma, using a murine model of allergic asthma. In this model, we observed the increase of the release of MMP-2 and MMP-9 in bronchoalveolar lavage fluids after Ag inhalation in the mice sensitized with OVA, which was accompanied by the infiltration of lymphocytes and eosinophils. Administration of tissue inhibitor of metalloproteinase-2 to airways inhibited the Ag-induced infiltration of lymphocytes and eosinophils to airway wall and lumen, reduced Ag-induced airway hyperresponsiveness, and increased the numbers of eosinophils and lymphocytes in peripheral blood. The inhibition of cellular infiltration to airway lumen was observed also with tissue inhibitor of metalloproteinase-1 and a synthetic matrix metalloproteinase inhibitor. These data suggest that MMPs, especially MMP-2 and MMP-9, are crucial for the infiltration of inflammatory cells and the induction of airway hyperresponsiveness, which are pathophysiologic features of bronchial asthma, and further raise the possibility of the inhibition of MMPs as a therapeutic strategy of bronchial asthma.  相似文献   

9.
Resolvin E1 (RvE1; 5S, 12R, 18R-trihydroxyeicosapentaenoic acid) is an anti-inflammatory lipid mediator derived from the omega-3 fatty acid eicosapentaenoic acid (EPA). It has been recently shown that RvE1 is involved in the resolution of inflammation. However, it is not known whether RvE1 is involved in the resolution of asthmatic inflammation. To investigate the anti-inflammatory effect of RvE1 in asthma, a murine model of asthma was studied. After RvE1 was administered to mice intraperitoneally, there were decreases in: airway eosinophil and lymphocyte recruitment, specific Th2 cytokine, IL-13, ovalbumin-specific IgE, and airway hyperresponsiveness (AHR) to inhaled methacholine. Moreover, RvE1-treated mice had significantly lower mucus scores compared to vehicle-treated mice based on the number of goblet cells stained with periodic acid-schiff (PAS). These findings provide evidence that RvE1 is a pivotal counterregulatory signal in allergic inflammation and offer novel multi-pronged therapeutic approaches for human asthma.  相似文献   

10.
Kim SH  Park HJ  Lee CM  Choi IW  Moon DO  Roh HJ  Lee HK  Park YM 《FEBS letters》2006,580(7):1883-1890
Epigallocatechin-3-gallate (EGCG), a major form of tea catechin, has anti-allergic properties. To elucidate the anti-allergic mechanisms of EGCG, we investigated its regulation of matrix metalloproteinase (MMP-9) expression in toluene diisocyanate (TDI)-inhalation lung tissues as well as TNF-alpha and Th2 cytokine (IL-5) production in BAL fluid. Compared with untreated asthmatic mice those administrated with EGCG had significantly reduced asthmatic reaction. Also, increased reactive oxygen species (ROS) generation by TDI inhalation was diminished by administration of EGCG in BAL fluid. These results suggest that EGCG regulates inflammatory cell migration possibly by suppressing MMP-9 production and ROS generation, and indicate that EGCG may be useful as an adjuvant therapy for bronchial asthma.  相似文献   

11.
Interleukin (IL)-33 is a recently described member of the IL-1 family and has been shown to induce production of T helper type 2 cytokines. In this study, an anti-IL-33 antibody was evaluated against pulmonary inflammation in mice sensitized and challenged with ovalbumin. The anti-IL-33 or a control antibody (150 μg/mouse) was given intraperitoneally as five doses before the sensitization and antigen challenge. Treatment with anti-IL-33 significantly reduced serum IgE secretion, the numbers of eosinophils and lymphocytes, and concentrations of IL-4, IL-5, and IL-13 in bronchoalveolar lavage fluid compared with administration of a control antibody. Histological examination of lung tissue demonstrated that anti-IL-33 significantly inhibited allergen-induced lung eosinophilic inflammation and mucus hypersecretion. Our data demonstrate for the first time that anti-IL-33 antibody can prevent the development of asthma in a mouse model and indicate that blockade of IL-33 may be a new therapeutic strategy for allergic asthma.  相似文献   

12.
Asthma is characterized by acute and chronic airway inflammation, and the severity of the airway hyperreactivity correlates with the degree of inflammation. Many of the features of lung inflammation observed in human asthma are reproduced in OVA-sensitized/challenged mice. T lymphocytes, particularly Th2 cells, are critically involved in the genesis of the allergic response to inhaled Ag. In addition to antiapoptotic effects, broad-spectrum caspase inhibitors inhibit T cell activation in vitro. We investigated the effect of the broad-spectrum caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), on airway inflammation in OVA-sensitized/challenged mice. OVA-sensitized mice treated with z-VAD-fmk immediately before allergen challenge showed marked reduction in inflammatory cell infiltration in the airways and pulmonary blood vessels, mucus production, and Th2 cytokine production. We hypothesized that the caspase inhibitor prevented T cell activation, resulting in the reduction of cytokine production and eosinophil infiltration. Treatment with z-VAD-fmk in vivo prevented subsequent T cell activation ex vivo. We propose that caspase inhibitors may offer a novel therapeutic approach to T cell-dependent inflammatory airway diseases.  相似文献   

13.
Kim SE  Kim JH  Min BH  Bae YM  Hong ST  Choi MH 《PloS one》2012,7(4):e35447
Epidemiological studies suggest an inverse relationship between helminth infections and allergic disease, and several helminth-derived products have been shown to suppress allergic responses in animals. This study was undertaken to evaluate the effect of a crude extract of Caenorhabditis elegans on allergic airway inflammation in a murine model of asthma. Allergic airway inflammation was induced in BALB/c mice by sensitization with ovalbumin. The effect of the C. elegans crude extract on the development of asthma and on established asthma was evaluated by analyzing airway hyperresponsiveness, serum antibody titers, lung histology and cell counts and cytokine levels in the bronchoalveolar lavage fluid. The role of IFN-γ in the suppression of asthma by the C. elegans crude extract was investigated in IFN-γ knockout and wild-type mice. When mice were sensitized with ovalbumin together with the crude extract of C. elegans, cellular infiltration into the lung was dramatically reduced in comparison with the ovalbumin-treated group. Treatment of mice with the C. elegans crude extract significantly decreased methacholine-induced airway hyperresponsiveness and the total cell counts and levels of IL-4, IL-5 and IL-13 in the bronchoalveolar lavage fluid but increased the levels of IFN-γ and IL-12. Sensitization with the C. elegans crude extract significantly diminished the IgE and IgG1 responses but provoked elevated IgG2a levels. However, the suppressive effect of the C. elegans crude extract was abolished in IFN-γ knockout mice, and the Th2 responses in these mice were as strong as those in wild-type mice sensitized with ovalbumin. The crude extract of C. elegans also suppressed the airway inflammation associated with established asthma. This study provides new insights into immune modulation by the C. elegans crude extract, which suppressed airway inflammation in mice not only during the development of asthma but also after its establishment by skewing allergen-induced Th2 responses to Th1 responses.  相似文献   

14.
Studies have shown autophagy participation in the immunopathology of inflammatory diseases. However, autophagy role in asthma and in eosinophil extracellular traps (EETs) release is poorly understood. Here, we attempted to investigate the autophagy involvement in EETs release and in lung inflammation in an experimental asthma model. Mice were sensitized with ovalbumin (OVA), followed by OVA challenge. Before the challenge with OVA, mice were treated with an autophagy inhibitor, 3-methyladenine (3-MA). We showed that 3-MA treatment decreases the number of eosinophils, eosinophil peroxidase (EPO) activity, goblet cells hyperplasia, proinflammatory cytokines, and nuclear factor kappa B (NFκB) p65 immunocontent in the lung. Moreover, 3-MA was able to improve oxidative stress, mitochondrial energy metabolism, and Na+, K+-ATPase activity. We demonstrated that treatment with autophagy inhibitor 3-MA reduced EETs formation in the airway. On the basis of our results, 3-MA treatment can be an interesting alternative for reducing lung inflammation, oxidative stress, mitochondrial damage, and EETs formation in asthma.  相似文献   

15.
16.
Airway inflammation is a characteristic of many lung disorders, including asthma and chronic obstructive pulmonary disease. Using a murine model of allergen-induced asthma, we have demonstrated that adenovirus-mediated delivery of the nuclear factor-kappaB (NF-kappaB) inhibitory protein ABIN-1 to the lung epithelium results in a considerable reduction of allergen-induced eosinophil infiltration into the lungs. This is associated with an ABIN-1-induced decrease in allergen-specific immunoglobulin E levels in serum, as well as a significant reduction of eotaxin, interleukin-4, and interleukin-1beta in bronchoalveolar lavage fluid. These findings not only prove that NF-kappaB plays a critical role in the pathogenesis of allergic inflammation but also illustrate that inhibiting NF-kappaB could have therapeutic value in the treatment of asthma and potentially other chronic inflammatory lung diseases.  相似文献   

17.
The flowers of Inula japonica (Inulae Flos) have long been used in traditional medicine for treating inflammatory diseases. The effects on OVA-induced asthmatic mice of an Inulae Flos extract (IFE) were evaluated in this study. The anti-asthmatic effects of IFE were determined by observing eosinophil recruitment, airway hyper-responsiveness (AHR), Th2 cytokine and IgE levels, and lung histopathology. The IFE treatment effectively reduced the percentage of eosinophils and Th2 cytokines in the bronchoalveolar lavage fluid (BALF) when compared to the levels in OVA-induced mice. IFE also suppressed AHR induced by aerosolized methacholine in OVA-induced mice. The results of the histopathological studies indicate that inflammatory cell infiltration and mucus hypersecretion were both inhibited by the IFE administration when compared to the effect on OVA-induced mice. The IFE treatment also suppressed the serum IgE levels and decreased Th2 cytokines in the supernatant of cultured splenocytes. These results suggest that IFE may have therapeutic potential against asthma.  相似文献   

18.
Toluene diisocyanate (TDI) is a leading cause of occupational asthma. Although considerable controversy remains regarding its pathogenesis, TDI-induced asthma is an inflammatory disease of the airways characterized by airway remodeling. Peroxisome proliferator-activated receptor gamma (PPARgamma) has been shown to play a critical role in the control of airway inflammatory responses. However, no data are available on the role of PPARgamma in TDI-induced asthma. We have used a mouse model for TDI-induced asthma to determine the effect of PPARgamma agonist, rosiglitazone, or pioglitazone, and PPARgamma on TDI-induced bronchial inflammation and airway remodeling. This study with the TDI-induced model of asthma revealed the following typical pathophysiological features: increased numbers of inflammatory cells of the airways, airway hyperresponsiveness, increased levels of Th2 cytokines (IL-4, IL-5, and IL-13), adhesion molecules (ICAM-1 and VCAM-1), chemokines (RANTES and eotaxin), TGF-beta1, and NF-kappaB in nuclear protein extracts. In addition, the mice exposed to TDI developed features of airway remodeling, including thickening of the peribronchial smooth muscle layer, subepithelial collagen deposition, and increased airway mucus production. Administration of PPARgamma agonists or adenovirus carrying PPARgamma2 cDNA reduced the pathophysiological symptoms of asthma and decreased the increased levels of Th2 cytokines, adhesion molecules, chemokines, TGF-beta1, and NF-kappaB in nuclear protein extracts after TDI inhalation. In addition, inhibition of NF-kappaB activation decreased the increased levels of Th2 cytokines, adhesion molecules, chemokines, and TGF-beta1 after TDI inhalation. These findings demonstrate a protective role of PPARgamma in the pathogenesis of the TDI-induced asthma phenotype.  相似文献   

19.
CARMA1 has been shown to be important for Ag-stimulated activation of NF-kappaB in lymphocytes in vitro and thus could be a novel therapeutic target in inflammatory diseases such as asthma. In the present study, we demonstrate that mice with deletion in the CARMA1 gene (CARMA1(-/-)) do not develop inflammation in a murine model of asthma. Compared with wild-type controls, CARMA1(-/-) mice did not develop airway eosinophilia, had no significant T cell recruitment into the airways, and had no evidence for T cell activation in the lung or draining lymph nodes. In addition, the CARMA1(-/-) mice had significantly decreased levels of IL-4, IL-5, and IL-13, did not produce IgE, and did not develop airway hyperresponsiveness or mucus cell hypertrophy. However, adoptive transfer of wild-type Th2 cells into CARMA1(-/-) mice restored eosinophilic airway inflammation, cytokine production, airway hyperresponsiveness, and mucus production. This is the first demonstration of an in vivo role for CARMA1 in a disease process. Furthermore, the data clearly show that CARMA1 is essential for the development of allergic airway inflammation through its role in T lymphocytes, and may provide a novel means to inhibit NF-kappaB for therapy in asthma.  相似文献   

20.
Tryptase inhibition blocks airway inflammation in a mouse asthma model   总被引:11,自引:0,他引:11  
Release of human lung mast cell tryptase may be important in the pathophysiology of asthma. We examined the effect of the reversible, nonelectrophilic tryptase inhibitor MOL 6131 on airway inflammation and hyper-reactivity in a murine model of asthma. MOL 6131 is a potent selective nonpeptide inhibitor of human lung mast cell tryptase based upon a beta-strand template (K(i) = 45 nM) that does not inhibit trypsin (K(i) = 1,061 nM), thrombin (K(i) = 23, 640 nM), or other serine proteases. BALB/c mice after i.p. OVA sensitization (day 0) were challenged intratracheally with OVA on days 8, 15, 18, and 21. MOL 6131, administered days 18-21, blocked the airway inflammatory response to OVA assessed 24 h after the last OVA challenge on day 22; intranasal delivery (10 mg/kg) had a greater anti-inflammatory effect than oral delivery (10 or 25 mg/kg) of MOL 6131. MOL 6131 reduced total cells and eosinophils in bronchoalveolar lavage fluid, airway tissue eosinophilia, goblet cell hyperplasia, mucus secretion, and peribronchial edema and also inhibited the release of IL-4 and IL-13 in bronchoalveolar lavage fluid. However, tryptase inhibition did not alter airway hyper-reactivity to methacholine in vivo. These results support tryptase as a therapeutic target in asthma and indicate that selective tryptase inhibitors can reduce allergic airway inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号