首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
高通量的蛋白质互作数据与结构域互作数据的出现,使得在蛋白质组学领域内研究人类蛋白质结构互作网络,进一步揭示蛋白质结构与功能间的潜在关系成为可能.蛋白质上广泛分布的结构域被认为是蛋白质结构、功能以及进化的基本功能单元.然而,结合蛋白质的结构信息(例如蛋白质结构域数目、长度和覆盖率等)来研究这些表象后的内部机制仍然面临着挑战.将蛋白质分为单结构域蛋白质与多结构域蛋白质,并进一步结合蛋白质互作信息与结构域互作信息构建了人类蛋白质结构互作网络;通过与人类蛋白质互作网络进行比较,研究了人类蛋白质结构互作网络的特殊结构特征;对于单结构域蛋白质与多结构域蛋白质,分别进行了功能富集分析、功能离散度分析以及功能一致性分析等.结果发现,将结构域互作信息综合考虑进来后,人类蛋白质结构互作网络可以提供更多的单纯的蛋白质互作网络无法提供的细节信息,揭示蛋白质互作网络的复杂性.  相似文献   

2.
3.
hub蛋白质作为参与较多互作的"中心蛋白".在实现蛋白质功能和生命活动中发挥着关键作用.而结构域作为蛋白质上的基本功能区域,决定着蛋白质功能及蛋白质互作的情况.互作网络中hub蛋白质和结构域对于蛋白质功能的实现均起到决定性的作用.对蛋白质互作与结构域的关系分析表明.蛋白质互作与结构域之间存在着密切的联系.对人类蛋白质互作网络中的hub蛋白与结构域进行关联分析.探讨hub蛋白及其互作partner与结构域数目之间的关系,并通过hub蛋白质之间的互作对相应结构域的关系进行进一步的论证.  相似文献   

4.
5.
Functional genomics screens using multi-parametric assays are powerful approaches for identifying genes involved in particular cellular processes. However, they suffer from problems like noise, and often provide little insight into molecular mechanisms. A bottleneck for addressing these issues is the lack of computational methods for the systematic integration of multi-parametric phenotypic datasets with molecular interactions. Here, we present Integrative Multi Profile Analysis of Cellular Traits (IMPACT). The main goal of IMPACT is to identify the most consistent phenotypic profile among interacting genes. This approach utilizes two types of external information: sets of related genes (IMPACT-sets) and network information (IMPACT-modules). Based on the notion that interacting genes are more likely to be involved in similar functions than non-interacting genes, this data is used as a prior to inform the filtering of phenotypic profiles that are similar among interacting genes. IMPACT-sets selects the most frequent profile among a set of related genes. IMPACT-modules identifies sub-networks containing genes with similar phenotype profiles. The statistical significance of these selections is subsequently quantified via permutations of the data. IMPACT (1) handles multiple profiles per gene, (2) rescues genes with weak phenotypes and (3) accounts for multiple biases e.g. caused by the network topology. Application to a genome-wide RNAi screen on endocytosis showed that IMPACT improved the recovery of known endocytosis-related genes, decreased off-target effects, and detected consistent phenotypes. Those findings were confirmed by rescreening 468 genes. Additionally we validated an unexpected influence of the IGF-receptor on EGF-endocytosis. IMPACT facilitates the selection of high-quality phenotypic profiles using different types of independent information, thereby supporting the molecular interpretation of functional screens.  相似文献   

6.
  1. Download : Download high-res image (68KB)
  2. Download : Download full-size image
Highlights
  • •Sin3 paralog identity influences Sin3 complex composition.
  • •Chemical cross-linking mass spectrometry identifies domains in SIN3A and SIN3B that mediate complex formation.
  • •Complex subunit homology to yeast Sin3 complex components may assist in defining distinct forms of the Sin3 complex in humans.
  • •A nuclear import signal within SIN3B is identified via chemical cross-linking mass spectrometry.
  相似文献   

7.
Assessing the contribution of promoters and coding sequences to gene evolution is an important step toward discovering the major genetic determinants of human evolution. Many specific examples have revealed the evolutionary importance of cis-regulatory regions. However, the relative contribution of regulatory and coding regions to the evolutionary process and whether systemic factors differentially influence their evolution remains unclear. To address these questions, we carried out an analysis at the genome scale to identify signatures of positive selection in human proximal promoters. Next, we examined whether genes with positively selected promoters (Prom+ genes) show systemic differences with respect to a set of genes with positively selected protein-coding regions (Cod+ genes). We found that the number of genes in each set was not significantly different (8.1% and 8.5%, respectively). Furthermore, a functional analysis showed that, in both cases, positive selection affects almost all biological processes and only a few genes of each group are located in enriched categories, indicating that promoters and coding regions are not evolutionarily specialized with respect to gene function. On the other hand, we show that the topology of the human protein network has a different influence on the molecular evolution of proximal promoters and coding regions. Notably, Prom+ genes have an unexpectedly high centrality when compared with a reference distribution (P = 0.008, for Eigenvalue centrality). Moreover, the frequency of Prom+ genes increases from the periphery to the center of the protein network (P = 0.02, for the logistic regression coefficient). This means that gene centrality does not constrain the evolution of proximal promoters, unlike the case with coding regions, and further indicates that the evolution of proximal promoters is more efficient in the center of the protein network than in the periphery. These results show that proximal promoters have had a systemic contribution to human evolution by increasing the participation of central genes in the evolutionary process.  相似文献   

8.
9.
10.
Liquid-liquid phase separation (LLPS) is an important mechanism that mediates the formation of biomolecular condensates. Despite the immense interest in LLPS, phase-separated proteins verified by experiments are still limited, and identification of phase-separated proteins at proteome-scale is a challenging task. Multivalent interaction among macromolecules is the driving force of LLPS, which suggests that phase-separated proteins may harbor distinct biological characteristics in protein–protein interactions (PPIs). In this study, we constructed an integrated human PPI network (HPIN) and mapped phase-separated proteins into it. Analysis of the network parameters revealed differences of network topology between phase-separated proteins and others. The results further suggested the efficiency when applying topological similarities in distinguishing components of MLOs. Furthermore, we found that affinity purification mass spectrometry (AP-MS) detects PPIs more effectively than yeast-two hybrid system (Y2H) in phase separation-driven condensates. Our work provides the first global view of the distinct network topology of phase-separated proteins in human interactome, suggesting incorporation of PPI network for LLPS prediction in further studies.  相似文献   

11.
本研究对非小细胞肺癌(non-small cell lung carcinoma,NSCLC)基因表达数据进行差异表达分析,并与蛋白质相互作用网络(PPIN)数据进行整合,进一步利用Heinz搜索算法识别NSCLC相关的基因功能模块,并对模块中的基因进行功能(GO term)和通路(KEGG)富集分析,旨在探究肺癌发病分子机制。蛋白互作网络分析得到一个包含96个基因和117个相互作用的功能模块,以及8个对NSCLC的发生和发展起到关键作用候选基因标志物。富集分析结果表明,这些基因主要富集于基因转录催化及染色质调控等生物学过程,并在基础转录因子、黏着连接、细胞周期、Wnt信号通路及HTLV-Ⅰ感染等生物学通路中发挥重要作用。本研究对非小细胞肺癌相关的基因和生物学通路进行预测,可用于肺癌的早期诊断和早期治疗,以降低肺癌死亡率。  相似文献   

12.
Interactions of proteins regulate signaling, catalysis, gene expression and many other cellular functions. Therefore, characterizing the entire human interactome is a key effort in current proteomics research. This challenge is complicated by the dynamic nature of protein-protein interactions (PPIs), which are conditional on the cellular context: both interacting proteins must be expressed in the same cell and localized in the same organelle to meet. Additionally, interactions underlie a delicate control of signaling pathways, e.g. by post-translational modifications of the protein partners - hence, many diseases are caused by the perturbation of these mechanisms. Despite the high degree of cell-state specificity of PPIs, many interactions are measured under artificial conditions (e.g. yeast cells are transfected with human genes in yeast two-hybrid assays) or even if detected in a physiological context, this information is missing from the common PPI databases. To overcome these problems, we developed a method that assigns context information to PPIs inferred from various attributes of the interacting proteins: gene expression, functional and disease annotations, and inferred pathways. We demonstrate that context consistency correlates with the experimental reliability of PPIs, which allows us to generate high-confidence tissue- and function-specific subnetworks. We illustrate how these context-filtered networks are enriched in bona fide pathways and disease proteins to prove the ability of context-filters to highlight meaningful interactions with respect to various biological questions. We use this approach to study the lung-specific pathways used by the influenza virus, pointing to IRAK1, BHLHE40 and TOLLIP as potential regulators of influenza virus pathogenicity, and to study the signalling pathways that play a role in Alzheimer''s disease, identifying a pathway involving the altered phosphorylation of the Tau protein. Finally, we provide the annotated human PPI network via a web frontend that allows the construction of context-specific networks in several ways.  相似文献   

13.
Physical interactions between proteins mediate a variety of biological functions, including signal transduction, physical structuring of the cell and regulation. While extensive catalogs of such interactions are known from model organisms, their evolutionary histories are difficult to study given the lack of interaction data from phylogenetic outgroups. Using phylogenomic approaches, we infer a upper bound on the time of origin for a large set of human protein-protein interactions, showing that most such interactions appear relatively ancient, dating no later than the radiation of placental mammals. By analyzing paired alignments of orthologous and putatively interacting protein-coding genes from eight mammals, we find evidence for weak but significant co-evolution, as measured by relative selective constraint, between pairs of genes with interacting proteins. However, we find no strong evidence for shared instances of directional selection within an interacting pair. Finally, we use a network approach to show that the distribution of selective constraint across the protein interaction network is non-random, with a clear tendency for interacting proteins to share similar selective constraints. Collectively, the results suggest that, on the whole, protein interactions in mammals are under selective constraint, presumably due to their functional roles.  相似文献   

14.
基于蛋白质网络功能模块的蛋白质功能预测   总被引:1,自引:0,他引:1  
在破译了基因序列的后基因组时代,随着系统生物学实验的快速发展,产生了大量的蛋白质相互作用数据,利用这些数据寻找功能模块及预测蛋白质功能在功能基因组研究中具有重要意义.打破了传统的基于蛋白质间相似度的聚类模式,直接从蛋白质功能团的角度出发,考虑功能团间的一阶和二阶相互作用,提出了模块化聚类方法(MCM),对实验数据进行聚类分析,来预测模块内未知蛋白质的功能.通过超几何分布P值法和增、删、改相互作用的方法对聚类结果进行预测能力分析和稳定性分析.结果表明,模块化聚类方法具有较高的预测准确度和覆盖率,有很好的容错性和稳定性.此外,模块化聚类分析得到了一些具有高预测准确度的未知蛋白质的预测结果,将会对生物实验有指导意义,其算法对其他具有相似结构的网络也具有普遍意义.  相似文献   

15.
16.
17.
Annotations of gene structures and regulatory elements can inform genome-wide association studies (GWASs). However, choosing the relevant annotations for interpreting an association study of a given trait remains challenging. I describe a statistical model that uses association statistics computed across the genome to identify classes of genomic elements that are enriched with or depleted of loci influencing a trait. The model naturally incorporates multiple types of annotations. I applied the model to GWASs of 18 human traits, including red blood cell traits, platelet traits, glucose levels, lipid levels, height, body mass index, and Crohn disease. For each trait, I used the model to evaluate the relevance of 450 different genomic annotations, including protein-coding genes, enhancers, and DNase-I hypersensitive sites in over 100 tissues and cell lines. The fraction of phenotype-associated SNPs influencing protein sequence ranged from around 2% (for platelet volume) up to around 20% (for low-density lipoprotein cholesterol), repressed chromatin was significantly depleted for SNPs associated with several traits, and cell-type-specific DNase-I hypersensitive sites were enriched with SNPs associated with several traits (for example, the spleen in platelet volume). Finally, reweighting each GWAS by using information from functional genomics increased the number of loci with high-confidence associations by around 5%.  相似文献   

18.
19.
HPID: the Human Protein Interaction Database   总被引:1,自引:0,他引:1  
The Human Protein Interaction Database (http://www.hpid.org) was designed (1) to provide human protein interaction information pre-computed from existing structural and experimental data, (2) to predict potential interactions between proteins submitted by users and (3) to provide a depository for new human protein interaction data from users. Two types of interaction are available from the pre-computed data: (1) interactions at the protein superfamily level and (2) those transferred from the interactions of yeast proteins. Interactions at the superfamily level were obtained by locating known structural interactions of the PDB in the SCOP domains and identifying homologs of the domains in the human proteins. Interactions transferred from yeast proteins were obtained by identifying homologs of the yeast proteins in the human proteins. For each human protein in the database and each query submitted by users, the protein superfamilies and yeast proteins assigned to the protein are shown, along with their interacting partners. We have also developed a set of web-based programs so that users can visualize and analyze protein interaction networks in order to explore the networks further. AVAILABILITY: http://www.hpid.org.  相似文献   

20.
通过研究神经网络权值矩阵的算法,挖掘蛋白质二级结构与氨基酸序列间的内在规律,提高一级序列预测二级结构的准确度。神经网络方法在特征分类方面具有良好表现,经过学习训练后的神经元连接权值矩阵包含样本的内在特征和规律。研究使用神经网络权值矩阵打分预测;采用错位比对方法寻找敏感的氨基酸邻域;分析测试集在不同加窗长度下的共性表现。实验表明,在滑动窗口长度L=7时,预测性能变化显著;邻域位置P=4的氨基酸残基对预测性能有加强作用。该研究方法为基于局部序列特征的蛋白质二级结构预测提供了新的算法设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号