首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During muscle atrophy, myofibrillar proteins are degraded in an ordered process in which MuRF1 catalyzes ubiquitylation of thick filament components (Cohen et al. 2009. J. Cell Biol. http://dx.doi.org/10.1083/jcb.200901052). Here, we show that another ubiquitin ligase, Trim32, ubiquitylates thin filament (actin, tropomyosin, troponins) and Z-band (α-actinin) components and promotes their degradation. Down-regulation of Trim32 during fasting reduced fiber atrophy and the rapid loss of thin filaments. Desmin filaments were proposed to maintain the integrity of thin filaments. Accordingly, we find that the rapid destruction of thin filament proteins upon fasting was accompanied by increased phosphorylation of desmin filaments, which promoted desmin ubiquitylation by Trim32 and degradation. Reducing Trim32 levels prevented the loss of both desmin and thin filament proteins. Furthermore, overexpression of an inhibitor of desmin polymerization induced disassembly of desmin filaments and destruction of thin filament components. Thus, during fasting, desmin phosphorylation increases and enhances Trim32-mediated degradation of the desmin cytoskeleton, which appears to facilitate the breakdown of Z-bands and thin filaments.  相似文献   

2.
Muscle fibers are maintained in culture in a fully contractile state and are relaxed by the addition of 10(-7) M tetrodotoxin (TTX). This toxin binds to muscle membrane Na+- channels, abolishes spontaneous contractions and causes failure of the fiber to accumulate myosin heavy chains. These effects are reversible on removal of TTX. Synthesis and accumulation kinetics have been obtained for myofibrillar and for cytoplasmic filament proteins in normal, active muscle and in TTX- relaxed muscle fibers in culture. In relaxed fibers the synthesis of most proteins remained normal or slightly elevated. However, the accumulation of all myofibrillar proteins examined was markedly inhibited in TTX-treated cultures, whereas the accumulation of cytoplasmic filament proteins was normal or slightly elevated. Myofibrillar proteins examined were alpha-actin, troponin-C, myosin fast light chain 1, myosin fast light chain 2, alpha, beta-tropomyosins and the phosphorylated forms of tropomyosin and fast light chain 2. Cytoplasmic filament proteins studied were vimentin, alpha, beta-desmin and beta, alpha-actin. We also examined the synthesis and accumulation of six unidentified muscle-specific proteins and nine unidentified nonmuscle-specific proteins. Most of these proteins showed a normal accumulation pattern in TTX-relaxed fibers. We concluded that muscle fibers made inactive by TTX display an increased instability of all myofibrillar proteins while cytoplasmic filament proteins and cytoplasmic proteins in general are relatively unaffected. We suggest that TTX interferes, in a manner as yet unidentified, with assembly and normal stability of myofibrils. Decreased assembly and/or increased instability of myofibrils would lead to increased rates of myofibrillar protein degradation.  相似文献   

3.
A Ca2+-activated proteolytic enzyme that partially degrades myofibrils was isolated from hind limb muscles of normal rabbits and rabbits undergoing rapid muscle atrophy as a result of vitamin E deficiency. Extractable Ca2+-activated protease activity was 3.6 times higher in muscle tissue from vitamin E-deficient rabbits than from muscle tissue of control rabbits. Ultrastructural studies of muscle from vitamin E-deficient rabbits showed that the Z disk was the first myofibrillar structure to show degradative changes in atrophying muscle. Myofibrils prepared from muscles from vitamin E-deficient rabbits showed partial or complete loss of Z-disk density. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the amount of troponin-T (37 000 daltons) and alpha-actinin (96 000 daltons) was reduced in myofibrils from atrophying muscle as compared to myofibrils prepared from control muscle. In vitro treatment of purified myofibrils with purified Ca2+-activated proteolytic enzyme produced alterations in myofibrillar ultrastructure that were identical to the initial alterations occurring in myofibrils from atrophying muscle (i.e. weakening and subsequent removal of Z disks). Additonally the electrophoretic banding pattern of Ca2+-activated proteolytic enzyme-treated myofibrils is very similar to that of myofibrils prepared from muscles atrophying as a result of nutritional vitamin E deficiency. The possible role of Ca2+-activated proteolytic enzyme in disassembly and degradation of the myofibril is discussed.  相似文献   

4.
A Ca2+-activated proteolytic enzyme 1 that partially degrades myofibrials was isolated from hind limb muscles of normal rabbits and rabbits undergoing rapid muscle atrophy as a result of vitamin E deficiency. Extractable Ca2+-activated protease activity was 3.6 times higher in muscle tissue from vitamin E-deficient rabbits than from muscle tissue of control rabbits. Ultrastructural studies of muscle from vitamin E-deficient rabbits showed that the Z disk was the first myofibrillar structure to show degradative changes in atrophying muscle. Myofibris prepared from muscles vitamin E-deficient rabbits showed partial or complete loss of Z-disk density. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the amount of troponin-T (37 000 daltons) and α-actinin (96 000 daltons) was reduced in myofibrils from atrophying muscle as compared to myofibrils prepared from control muscle. In vitro treatment of purified myofibrils with purified Ca2+-activated proteolytic enzyme produced alterations in myofibrillar ultrastructure that were identical to the initial alterations occuring in myofibrils from atrophying muscle (i.e. weakening and subsequent removal of Z disks). Additionally the electrophoretic banding pattern of Ca2+-activated proteolytic enzyme-treated myofibrils is very similar to that of myofibrils prepared from muscles atrophying as a result of nutritional vitamin E deficiency. The possible role of Ca2+-activated proteolytic enzyme in disassembly and degradation of the myofibril is discussed.  相似文献   

5.
Extraocular muscles (EOMs) are categorized as skeletal muscles; however, emerging evidence indicates that their gene expression profile, metabolic characteristics and functional properties are significantly different from the prototypical members of this muscle class. Gene expression profiling of developing and adult EOM suggest that many myofilament and cytoskeletal proteins have unique expression patterns in EOMs, including the maintained expression of embryonic and fetal isoforms of myosin heavy chains (MyHC), the presence of a unique EOM specific MyHC and mixtures of both cardiac and skeletal muscle isoforms of thick and thin filament accessory proteins. We demonstrate that nonmuscle myosin IIB (nmMyH IIB) is a sarcomeric component in ∼ 20% of the global layer fibers in adult rat EOMs. Comparisons of the myofibrillar distribution of nmMyHC IIB with sarcomeric MyHCs indicate that nmMyH IIB co-exists with slow MyHC isoforms. In longitudinal sections of adult rat EOM, nmMyHC IIB appears to be restricted to the A-bands. Although nmMyHC IIB has been previously identified as a component of skeletal and cardiac sarcomeres at the level of the Z-line, the novel distribution of this protein within the A band in EOMs is further evidence of both the EOMs complexity and unconventional phenotype.  相似文献   

6.
A stacking sodium dodecyl sulfate polyacrylamide gel electrophoresis system has been used to resolve and quantify all the major myofibrillar protein components (actin, myosin, tropomyosin, and troponin C, T, and I). Quantification was achieved by densitometry of the fast green-stained gels calibrated with the use of purified proteins. The approximate molar ratios of these proteins in rabbit muscle are: actin: myosin: tropomyosin: troponin T: troponin I: troponin C = 7:1:1:1:1:1. On the basis of these results and available structural information one obtains an estimate of 254 myosin molecules per thick filament.  相似文献   

7.
Gentle treatment with an ATP-containing relaxing solution of isolated myofibrils from rat diaphragm, soleus, extensor digitorum longus, and left atria maintained in vitro releases a small amount of myofilaments constituting less than 5% of total myofibrillar protein. Successive extraction of myofibrils produced little further filament release. Releasable myofilaments lack alpha-actinin (Mr = 95,000), certain very high molecular weight proteins (greater than 200,000), and possibly M-line protein but contain other myofibrillar proteins. After pulse-labeling with [3H]leucine for 8 min, specific activity of the myosin heavy chain in the easily releasable myofilaments is 3-6 times higher than the specific activity of myosin heavy chain in the residual myofibrils, although 85-90% of total label is in the myofibrillar myosin. In the absence of protein synthesis, releasable filament specific activity decreases, with a half-time of 60-90 min, to that of the myofibrillar myosin. This labeling pattern appears inconsistent with a simple precursor-product relationship between releasable filaments and myofibrils suggesting that the filaments originate largely from myofibrils. Preincubation of muscles with several factors known to decrease proteolysis, i.e. passive stretch, leupeptin, colchicine, and cycloheximide, reduced the size of the releasable filament fraction. Treatment of muscles with the calcium ionophore A23187, which accelerates proteolysis, and pretreatment of myofibrils with either trypsin or calcium-dependent protease increased filament release. Therefore, the releasable filament fraction may contain intermediates in the breakdown of myofibrils. The labeling kinetics may indicate a mixing of myofilaments within myofibrils which functions in the movement of contractile protein to its possible site of degradation, i.e. the myofibrillar surface.  相似文献   

8.
9.
Kettin is a high molecular mass protein of insect muscle that in the sarcomeres binds to actin and alpha-actinin. To investigate kettin's functional role, we combined immunolabeling experiments with mechanical and biochemical studies on indirect flight muscle (IFM) myofibrils of Drosophila melanogaster. Micrographs of stretched IFM sarcomeres labeled with kettin antibodies revealed staining of the Z-disc periphery. After extraction of the kettin-associated actin, the A-band edges were also stained. In contrast, the staining pattern of projectin, another IFM-I-band protein, was not altered by actin removal. Force measurements were performed on single IFM myofibrils to establish the passive length-tension relationship and record passive stiffness. Stiffness decreased within seconds during gelsolin incubation and to a similar degree upon kettin digestion with mu-calpain. Immunoblotting demonstrated the presence of kettin isoforms in normal Drosophila IFM myofibrils and in myofibrils from an actin-null mutant. Dotblot analysis revealed binding of COOH-terminal kettin domains to myosin. We conclude that kettin is attached not only to actin but also to the end of the thick filament. Kettin along with projectin may constitute the elastic filament system of insect IFM and determine the muscle's high stiffness necessary for stretch activation. Possibly, the two proteins modulate myofibrillar stiffness by expressing different size isoforms.  相似文献   

10.
In an effort to understand the conditions that promote the assembly of myofibrillar proteins in muscle cells, the temporal sequence of accumulation of four myofibrillar proteins, actin, myosin, tropomyosin, and α-actinin, was monitored during the period of de novo assembly of myofibrils in differentiating muscle cells. Isotope dilution experiments indicated that all four proteins were accumulated simultaneously. Therefore, assembly of myofibrils may be occurring in the presence of a full complement of myofibrillar proteins.  相似文献   

11.
Chicken skeletal muscle taken from embryos in ovo was examined by thin-section electron microscopy. Measurements of filament diameters reveal three nonoverlapping groups of filaments: thin (actin myofibrillar) filaments with mean diameters of 5.3 +/- 0.6 nm (S.D.), thick (myosin myofibrillar) filaments with mean diameters of 15 +/- 1.4 nm, and intermediate filaments with mean diameters of 9.3 +/- 0.9 nm. During muscle development these diameters do not change. By counting the number of filaments observed in the sarcoplasm at different stages, we find that the spatial density of intermediate filaments decreases during avian myogenesis in ovo, from 91 intermediate filaments/micron 2 at 6 days to 43 intermediate filaments/micron 2 at 17 days in ovo. Initially randomly arranged, some intermediate filaments become associated with Z discs, sarcoplasmic reticulum, nuclear membrane, and the sarcolemma between 6 and 10 days in ovo. These associated intermediate filaments course both parallel and transverse to myofibrils, forming lateral connections between myofibrillar Z discs and longitudinal connections from Z disc to Z disc within myofibrils. Intermediate filaments also appear to connect Z discs with the nuclear membrane. The intermediate filament associations persist through day 17 of development, after which the presence of cytoskeletal filaments is obscured by the densely packed myofibrils and membranes. Intermediate filament distribution becomes anisotropic during development. A greater proportion of intermediate filaments in the immediate perimyofibrillar area are oriented parallel to myofibrils than in other areas, so that the majority of the intermediate filaments nearest the myofibrils course parallel to them. The longitudinal intramyofibrillar intermediate filaments persist throughout development, as shown by their existence in KI-extracted adult myofibrils.  相似文献   

12.
Among the hallmarks of aged organisms are an accumulation of misfolded proteins and a reduction in skeletal muscle mass ("sarcopenia"). We have examined the effects of aging and dietary restriction (which retards many age-related changes) on components of the ubiquitin proteasome system (UPS) in muscle. The hindlimb muscles of aged (30 months old) rats showed a marked loss of muscle mass and contained 2-3-fold higher levels of 26S proteasomes than those of adult (4 months old) controls. 26S proteasomes purified from muscles of aged and adult rats showed a similar capacity to degrade peptides, proteins, and an ubiquitylated substrate, but differed in levels of proteasome-associated proteins (e.g. the ubiquitin ligase E6AP and deubiquitylating enzyme USP14). Also, the activities of many other deubiquitylating enzymes were greatly enhanced in the aged muscles. Nevertheless, their content of polyubiquitylated proteins was higher than in adult animals. The aged muscles contained higher levels of the ubiquitin ligase CHIP, involved in eliminating misfolded proteins, and MuRF1, which ubiquitylates myofibrillar proteins. These muscles differed from ones rapidly atrophying due to disease, fasting, or disuse in that Atrogin-1/MAFbx expression was low and not inducible by glucocorticoids. Thus, the muscles of aged rats showed many adaptations indicating enhanced proteolysis by the UPS, which may enhance their capacity to eliminate misfolded proteins and seems to contribute to the sarcopenia. Accordingly, dietary restriction decreased or prevented the aging-associated increases in proteasomes and other UPS components and reduced muscle wasting.  相似文献   

13.
Four and a half LIM protein 1 (FHL1/SLIM1) is highly expressed in skeletal and cardiac muscle; however, the function of FHL1 remains unknown. Yeast two-hybrid screening identified slow type skeletal myosin-binding protein C as an FHL1 binding partner. Myosin-binding protein C is the major myosin-associated protein in striated muscle that enhances the lateral association and stabilization of myosin thick filaments and regulates actomyosin interactions. The interaction between FHL1 and myosin-binding protein C was confirmed using co-immunoprecipitation of recombinant and endogenous proteins. Recombinant FHL2 and FHL3 also bound myosin-binding protein C. FHL1 impaired co-sedimentation of myosin-binding protein C with reconstituted myosin filaments, suggesting FHL1 may compete with myosin for binding to myosin-binding protein C. In intact skeletal muscle and isolated myofibrils, FHL1 localized to the I-band, M-line, and sarcolemma, co-localizing with myosin-binding protein C at the sarcolemma in intact skeletal muscle. Furthermore, in isolated myofibrils FHL1 staining at the M-line appeared to extend partially into the C-zone of the A-band, where it co-localized with myosin-binding protein C. Overexpression of FHL1 in differentiating C2C12 cells induced "sac-like" myotube formation (myosac), associated with impaired Z-line and myosin thick filament assembly. This phenotype was rescued by co-expression of myosin-binding protein C. FHL1 knockdown using RNAi resulted in impaired myosin thick filament formation associated with reduced incorporation of myosin-binding protein C into the sarcomere. This study identified FHL1 as a novel regulator of myosin-binding protein C activity and indicates a role for FHL1 in sarcomere assembly.  相似文献   

14.
Purification of native myosin filaments from muscle   总被引:1,自引:0,他引:1       下载免费PDF全文
Analysis of the structure and function of native thick (myosin-containing) filaments of muscle has been hampered in the past by the difficulty of obtaining a pure preparation. We have developed a simple method for purifying native myosin filaments from muscle filament suspensions. The method involves severing thin (actin-containing) filaments into short segments using a Ca(2+)-insensitive fragment of gelsolin, followed by differential centrifugation to purify the thick filaments. By gel electrophoresis, the purified thick filaments show myosin heavy and light chains together with nonmyosin thick filament components. Contamination with actin is below 3.5%. Electron microscopy demonstrates intact thick filaments, with helical cross-bridge order preserved, and essentially complete removal of thin filaments. The method has been developed for striated muscles but can also be used in a modified form to remove contaminating thin filaments from native smooth muscle myofibrils. Such preparations should be useful for thick filament structural and biochemical studies.  相似文献   

15.
Skeletal muscle atrophy commonly occurs in acute and chronic disease. The expression of the muscle-specific E3 ligases atrogin-1 (MAFbx) and muscle RING finger 1 (MuRF1) is induced by atrophy stimuli such as glucocorticoids or absence of IGF-I/insulin and subsequent Akt signaling. We investigated whether glycogen synthase kinase-3β (GSK-3β), a downstream molecule in IGF-I/Akt signaling, is required for basal and atrophy stimulus-induced expression of atrogin-1 and MuRF1, and myofibrillar protein loss in C(2)C(12) skeletal myotubes. Abrogation of basal IGF-I signaling, using LY294002, resulted in a prominent induction of atrogin-1 and MuRF1 mRNA and was accompanied by a loss of myosin heavy chain fast (MyHC-f) and myosin light chains 1 (MyLC-1) and -3 (MyLC-3). The synthetic glucocorticoid dexamethasone (Dex) also induced the expression of both atrogenes and likewise resulted in the loss of myosin protein abundance. Genetic ablation of GSK-3β using small interfering RNA resulted in specific sparing of MyHC-f, MyLC-1, and MyLC-3 protein levels after Dex treatment or impaired IGF-I/Akt signaling. Interestingly, loss of endogenous GSK-3β suppressed both basal and atrophy stimulus-induced atrogin-1 and MuRF1 expression, whereas pharmacological GSK-3β inhibition, using CHIR99021 or LiCl, only reduced atrogin-1 mRNA levels in response to LY294002 or Dex. In conclusion, our data reveal that myotube atrophy and myofibrillar protein loss are GSK-3β dependent, and demonstrate for the first time that basal and atrophy stimulus-induced atrogin-1 mRNA expression requires GSK-3β enzymatic activity, whereas MuRF1 expression depends solely on the physical presence of GSK-3β.  相似文献   

16.
When smooth muscle cells are enzyme-dispersed from tissues they lose their original filament architecture and extracellular matrix surrounds. They then reorganize their structural proteins to accommodate a 2-D growth environment when seeded onto culture dishes. The aim of the present study was to determine the expression and reorganization of the structural proteins in rabbit aortic smooth muscle cells seeded into 3-D collagen gel and Matrigel (a basement membrane matrix). It was shown that smooth muscle cells seeded in both gels gradually reorganize their structural proteins into an architecture similar to that of their in vivo counterparts. At the same time, a gradual decrease in levels of smooth muscle-specific contractile proteins (mainly smooth muscle myosin heavy chain-2) and an increase in beta-nonmuscle actin occur, independent of both cell growth and extracellular matrix components. Thus, smooth muscle cells in 3-D extracellular matrix culture and in vivo have a similar filament architecture in which the contractile proteins such as actin, myosin, and alpha-actinin are organized into longitudinally arranged "myofibrils" and the vimentin-containing intermediate filaments form a meshed cytoskeletal network. However, the myofibrils reorganized in vitro contain less smooth muscle-specific and more nonmuscle contractile proteins.  相似文献   

17.
We investigated the importance of the myosin head in thick filament formation and myofibrillogenesis by generating transgenic Drosophila lines expressing either an embryonic or an adult isoform of the myosin rod in their indirect flight muscles. The headless myosin molecules retain the regulatory light-chain binding site, the alpha-helical rod and the C-terminal tailpiece. Both isoforms of headless myosin co-assemble with endogenous full-length myosin in wild-type muscle cells. However, rod polypeptides interfere with muscle function and cause a flightless phenotype. Electron microscopy demonstrates that this results from an antimorphic effect upon myofibril assembly. Thick filaments assemble when the myosin rod is expressed in mutant indirect flight muscles where no full-length myosin heavy chain is produced. These filaments show the characteristic hollow cross-section observed in wild type. The headless thick filaments can assemble with thin filaments into hexagonally packed arrays resembling normal myofibrils. However, thick filament length as well as sarcomere length and myofibril shape are abnormal. Therefore, thick filament assembly and many aspects of myofibrillogenesis are independent of the myosin head and these processes are regulated by the myosin rod and tailpiece. However, interaction of the myosin head with other myofibrillar components is necessary for defining filament length and myofibril dimensions.  相似文献   

18.
The length and spatial organization of thin filaments in skeletal muscle sarcomeres are precisely maintained and are essential for efficient muscle contraction. While the major structural components of skeletal muscle sarcomeres have been well characterized, the mechanisms that regulate thin filament length and spatial organization are not well understood. Tropomodulin is a new, 40.6-kD tropomyosin-binding protein from the human erythrocyte membrane skeleton that binds to one end of erythrocyte tropomyosin and blocks head-to-tail association of tropomyosin molecules along actin filaments. Here we show that rat psoas skeletal muscle contains tropomodulin based on immunoreactivity, identical apparent mobility on SDS gels, and ability to bind muscle tropomyosin. Results from immunofluorescence labeling of isolated myofibrils at resting and stretched lengths using anti-erythrocyte tropomodulin antibodies indicate that tropomodulin is localized at or near the free (pointed) ends of the thin filaments; this localization is not dependent on the presence of myosin thick filaments. Immunoblotting of supernatants and pellets obtained after extraction of myosin from myofibrils also indicates that tropomodulin remains associated with the thin filaments. 1.2-1.6 copies of muscle tropomodulin are present per thin filament in myofibrils, supporting the possibility that one or two tropomodulin molecules may be associated with the two terminal tropomyosin molecules at the pointed end of each thin filament. Although a number of proteins are associated with the barbed ends of the thin filaments at the Z disc, tropomodulin is the first protein to be specifically located at or near the pointed ends of the thin filaments. We propose that tropomodulin may cap the tropomyosin polymers at the pointed end of the thin filament and play a role in regulating thin filament length.  相似文献   

19.
Flightin is a multiply phosphorylated, 20-kD myofibrillar protein found in Drosophila indirect flight muscles (IFM). Previous work suggests that flightin plays an essential, as yet undefined, role in normal sarcomere structure and contractile activity. Here we show that flightin is associated with thick filaments where it is likely to interact with the myosin rod. We have created a null mutation for flightin, fln(0), that results in loss of flight ability but has no effect on fecundity or viability. Electron microscopy comparing pupa and adult fln(0) IFM shows that sarcomeres, and thick and thin filaments in pupal IFM, are 25-30% longer than in wild type. fln(0) fibers are abnormally wavy, but sarcomere and myotendon structure in pupa are otherwise normal. Within the first 5 h of adult life and beginning of contractile activity, IFM fibers become disrupted as thick filaments and sarcomeres are variably shortened, and myofibrils are ruptured at the myotendon junction. Unusual empty pockets and granular material interrupt the filament lattice of adult fln(0) sarcomeres. Site-specific cleavage of myosin heavy chain occurs during this period. That myosin is cleaved in the absence of flightin is consistent with the immunolocalization of flightin on the thick filament and biochemical and genetic evidence suggesting it is associated with the myosin rod. Our results indicate that flightin is required for the establishment of normal thick filament length during late pupal development and thick filament stability in adult after initiation of contractile activity.  相似文献   

20.
Huntington´s disease (HD) is a hereditary neurodegenerative disease resulting from an expanded polyglutamine sequence (poly-Q) in the protein huntingtin (HTT). Various studies report atrophy and metabolic pathology of skeletal muscle in HD and suggest as part of the process a fast-to-slow fiber type transition that may be caused by the pathological changes in central motor control or/and by mutant HTT in the muscle tissue itself. To investigate muscle pathology in HD, we used R6/2 mice, a common animal model for a rapidly progressing variant of the disease expressing exon 1 of the mutant human gene. We investigated alterations in the extensor digitorum longus (EDL), a typical fast-twitch muscle, and the soleus (SOL), a slow-twitch muscle. We focussed on mechanographic measurements of excised muscles using single and repetitive electrical stimulation and on the expression of the various myosin isoforms (heavy and light chains) using dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of whole muscle and single fiber preparations. In EDL of R6/2, the functional tests showed a left shift of the force-frequency relation and decrease in specific force. Moreover, the estimated relative contribution of the fastest myosin isoform MyHC IIb decreased, whereas the contribution of the slower MyHC IIx isoform increased. An additional change occurred in the alkali MyLC forms showing a decrease in 3f and an increase in 1f level. In SOL, a shift from fast MyHC IIa to the slow isoform I was detectable in male R6/2 mice only, and there was no evidence of isoform interconversion in the MyLC pattern. These alterations point to a partial remodeling of the contractile apparatus of R6/2 mice towards a slower contractile phenotype, predominantly in fast glycolytic fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号