首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of actin filament length and capping protein on the rate of end-to-end annealing of actin filaments. Long filaments were fragmented by shearing and allowed to recover. Stabilizing filaments with phalloidin in most experiments eliminated any contribution of subunit dissociation and association to the redistribution of lengths but did not affect the results. Two different assays, fluorescence microscopy to measure filament lengths and polymerization to measure concentration of barbed filament ends, gave the same time-course of annealing. The rate of annealing declines with time as the average filament length increases. Longer filaments also anneal slower than short filaments. The second-order annealing rate constant is inversely proportional to mean polymer length with a value of 1.1 mM(-1) s(-1)/length in subunits. Capping protein slows but does not prevent annealing. Annealing is a highly favorable reaction with a strong influence on the length of polymers produced by spontaneous polymerization and should be considered in thinking about polymer dynamics in cells.  相似文献   

2.
Short microtubules can be formed by shearing a sample at polymerization steady state of microtubules formed by glycerol-induced assembly of pure tubulin dimer. Such short microtubules show a rapid increase in mean length. The rate of this increase is too fast to be accounted for by statistical redistribution of subunits between microtubules. We propose that the fast length changes are a result of the end-to-end annealing of microtubules demonstrated by Rothwell et al. (Rothwell, S. W., Grasser, W. A., and Murphy, D. B. (1986) J. Cell Biol. 102, 619-627). This proposal has been tested by measuring the rate of annealing of free microtubules to Tetrahymena axonemes under conditions identical to those used for the lengthening of sheared microtubules. That free microtubules anneal to axonemal microtubules is indicated by the following observations. Axonemes elongate at both ends in the presence of steady state microtubules, as predicted for a symmetrical annealing process; under conditions where the microtubule number concentration is greater than that for axonemes, the initial rate of axoneme elongation is more rapid with a low concentration of long microtubules at steady state than with a high number concentration of short microtubules at steady state. These observations are inconsistent with the predictions of a model based on microtubule dynamic instability (Mitchison, T., and Kirschner, M. (1984) Nature 312, 237-242). The annealing rate observed with axonemes can account for the rate of elongation of sheared steady state microtubules.  相似文献   

3.
Intermediate filaments (IF) represent one of three main cytoskeletal structures in most animal cells. The human IF protein family includes about 70 members divided into five main groups. The characteristic feature of IF is that in various cells and tissues they are formed by proteins of different groups. Structures of all IF proteins follow a unique scheme: a central α-helical part is flanked at the N and C ends by positively charged polypeptide chains devoid of a clear secondary structure. The central part is highly conserved for all proteins in all animals, whereas the N and C termini strongly differ both in size and amino acid composition. This review covers the broad spectrum of recent investigations of IF structure and diverse functions. Special attention is paid to the regulatory mechanisms of IF functions, mainly to phosphorylation by different protein kinases whose role is well studied. The review gives examples of hereditary diseases associated with mutations of some IF proteins, which point to an important physiological role of these cytoskeletal structures.  相似文献   

4.
Before we can explain why so many closely related intermediate filament genes have evolved in vertebrates, while maintaining such dramatically tissue specific expression, we need to understand their function. The best evidence for intermediate filament function comes from observing the consequences of mutation and mis-expression, primarily in human tissues. Mostly these observations suggest that intermediate filaments are important in allowing individual cells, the tissues and whole organs to cope with various types of stress, in health and disease. Exactly how they do this is unclear and many aspects of cell dysfunction have been associated with intermediate filaments to date. In particular, it is still not clear whether the non-mechanical functions now being attributed to intermediate filaments are primary functions of these structural proteins, or secondary consequences of their function to respond to mechanical stress. We discuss selected situations in which responses to stress are clearly influenced by intermediate filaments.  相似文献   

5.
The ability of cells to utilize cholesterol derived from lipoprotein is important in plasma membrane biosynthesis, steroidogenesis and the regulation of sterol synthesis. While the endocytosis of lipoprotein-derived cholesterol has been well characterized, the subsequent events that mediate its post-lysosomal intracellular transport are not understood. Recent studies have suggested that vimentin-type intermediate filaments may have a role in cholesterol transport. The mechanism by which vimentin filaments affect this process is not known, but future studies promise to provide new insights into both the post-lysosomal transport of cholesterol and the intracellular functions of intermediate filaments.  相似文献   

6.
The assembly of intermediate filament (IF) arrays involves the recruitment of a complex set of cell-type-specific IF-associated proteins. Some of them are integral membrane proteins, others act as crosslinking proteins with vectorial binding activities, and yet others comprise motor proteins. In vivo IFs appear to be predominantly heteropolymers, although in vitro several IF proteins (e.g. vimentin, desmin, neurofilament (NF)-L and the nuclear lamins) do self-assemble into IF-like polymers. In contrast, NF-M, NF-H, nestin, synemin and paranemin, all bona fide IF proteins, are unable to self-assemble into IFs either in vitro or in vivo. The individual IF proteins of this large multigene family are chemically heterogeneous, exhibiting different assembly kinetics and yielding discrete types of filaments. The unique physical properties and interaction capabilities of these distinct IF molecular building blocks, in combination with accessory proteins, mediate the generation of a highly dynamic and interconnected, cell-type-specific cytoarchitecture.  相似文献   

7.
8.
Intermediate filaments in muscle and epithelial cells of nematodes   总被引:4,自引:1,他引:4       下载免费PDF全文
Current concepts of the developmentally controlled multigene family of intermediate filament (IF) proteins expect the origin of their complexity in evolutionary precursors preceding all vertebrate classes. Among invertebrates, however, firm ultrastructural as well as molecular documentation of IFs is restricted to some giant axons and to epithelia of a few molluscs and annelids. As Ascaris lumbricoides is easily dissected into clean tissues, IF expression in this large nematode was analyzed by electron microscopic and biochemical procedures and a monoclonal antibody reacting with all mammalian IF proteins. We document for the first time the presence of IFs in muscle cells of an invertebrate. They occur in three muscle types (irregular striated pharynx muscle, obliquely striated body muscle, uterus smooth muscle). IFs are also found in the epithelia studied (syncytial epidermis, intestine, ovary, testis). Immunoblots on muscles, pharynx, intestine, uterus, and epidermis identify a pair of polypeptides (with apparent molecular masses of 71 and 63 kD) as IF constituents. In vitro reconstitution of filaments was obtained with the proteins purified from body muscle. In the small nematode Caenorhabditis elegans IF proteins are so far found only in the massive desmosome-anchored tonofilament bundles which traverse a special epithelial cell type, the marginal cells of the pharynx. We speculate that IFs may occur in most but perhaps not all invertebrates and that they may not occur in all cells in large amounts. As electron micrographs of the epidermis of a planarian--a member of the Platyhelminthes--reveal IFs, the evolutionary origin of this cytoplasmic structure can be expected either among the lowest metazoa or already in some unicellular eukaryotes.  相似文献   

9.
10.
The effect of inorganic phosphate (Pi) on the depolymerization of F-actin has been measured. Pi inhibits disassembly of pyrene-labelled F-actin at steady-state induced either by dilution, or by shearing, suggesting that Pi decreases the off rate constant, k-, for dissociation. This effect of Pi is maximal at 20 mM, unlike the effect of Pi in reducing the critical concentration at the pointed end (maximal at 2 mM). This difference in concentration dependence for the two effects is interpreted as different affinities of Pi for the barbed and pointed ends, presumably as ADP-Pi-actin species. The contribution of ATP/ADP phase changes at filament ends (i.e. "dynamic instability") to length redistribution in sheared polymer steady-state actin filament populations was determined by (1) converting ATP to ADP in the system to prevent phase changes, or (2) adding 20 mM-Pi to the system to inhibit depolymerization. The observed absence of effect of these treatments on length redistribution excludes all mechanisms which involve phase change-driven disassembly or monomer exchange at filament ends, and appears to constrain the mechanism to one of end-to-end annealing under these conditions.  相似文献   

11.
12.
The presence and distribution of desmin, vimentin, cytokeratin, and laminin in the gonads of developing male rat embryos (11-17 days) were studied by immunocytochemistry. The findings were correlated with morphological changes of the cells and with the formation of basement membranes, as determined by electron microscopy. The surface epithelial and subepithelial cells of the meesonephros in the prospective gonadal region contained desmin. At the onset of gonadal development, vimentin appeared in the somatic cells of the thickening surface epithelium, which formed the gonadal ridge. Desmin disappeared and cytokeratins appeared in the Sertoli precursor cells at the inception of their epithelial differentiation. Simultaneously, the prospective Sertoli cells became polarized during their assembly into epithelial cell aggregates; the aggregates then fused and formed elongated testicular cords. The epithelial cell differentiation was accompanied by a deposition of basement membrane material around the cords and by an increase of desmin in the cells immediately around the cords. With further differentiation of the testicular cords, some cytokeratins from the Sertoli cells, but not from the cells of the rete cords, disappeared. On the other hand, other cytokeratin polypeptides and vimentin remained in the fetal Sertoli cells. The surface cell layer slowly differentiated towards a proper epithelium after the basic formation of the testicular cords and interstitium. Desmin and vimentin persisted in the interstitial cells throughout the entire study period. The early differentiation of the gonad is apparently under a general sex-independent initiation program. The developmental changes in intermediate filaments offer an opportunity for the further analysis of their general role in early organogenesis. In light of the genetic theory of testicular differentiation, the functions of the regulatory factor(s) include specific organization of cord cells, histological organization into looping cords rather than separated follicles, and male development of the interstitium, surface epithelium and tunica albuginea.  相似文献   

13.
Cross-linking of actin filaments (F-actin) into bundles and networks was investigated with three different isoforms of the dumbbell-shaped alpha-actinin homodimer under identical reaction conditions. These were isolated from chicken gizzard smooth muscle, Acanthamoeba, and Dictyostelium, respectively. Examination in the electron microscope revealed that each isoform was able to cross-link F-actin into networks. In addition, F-actin bundles were obtained with chicken gizzard and Acanthamoeba alpha-actinin, but not Dictyostelium alpha-actinin under conditions where actin by itself polymerized into disperse filaments. This F-actin bundle formation critically depended on the proper molar ratio of alpha-actinin to actin, and hence F-actin bundles immediately disappeared when free alpha-actinin was withdrawn from the surrounding medium. The apparent dissociation constants (Kds) at half-saturation of the actin binding sites were 0.4 microM at 22 degrees C and 1.2 microM at 37 degrees C for chicken gizzard, and 2.7 microM at 22 degrees C for both Acanthamoeba and Dictyostelium alpha-actinin. Chicken gizzard and Dictyostelium alpha-actinin predominantly cross-linked actin filaments in an antiparallel fashion, whereas Acanthamoeba alpha-actinin cross-linked actin filaments preferentially in a parallel fashion. The average molecular length of free alpha-actinin was 37 nm for glycerol-sprayed/rotary metal-shadowed and 35 nm for negatively stained chicken gizzard; 46 and 44 nm, respectively, for Acanthamoeba; and 34 and 31 nm, respectively, for Dictyostelium alpha-actinin. In negatively stained preparations we also evaluated the average molecular length of alpha-actinin when bound to actin filaments: 36 nm for chicken gizzard and 35 nm for Acanthamoeba alpha-actinin, a molecular length roughly coinciding with the crossover repeat of the two-stranded F-actin helix (i.e., 36 nm), but only 28 nm for Dictyostelium alpha-actinin. Furthermore, the minimal spacing between cross-linking alpha-actinin molecules along actin filaments was close to 36 nm for both smooth muscle and Acanthamoeba alpha-actinin, but only 31 nm for Dictyostelium alpha-actinin. This observation suggests that the molecular length of the alpha-actinin homodimer may determine its spacing along the actin filament, and hence F-actin bundle formation may require "tight" (i.e., one molecule after the other) and "untwisted" (i.e., the long axis of the molecule being parallel to the actin filament axis) packing of alpha-actinin molecules along the actin filaments.  相似文献   

14.
J A Evans  E Eisenberg 《Biochemistry》1989,28(19):7741-7747
Considerable effort has been devoted to understanding the mechanism of 18O exchange in skinned skeletal and insect muscle fibers. However, a full understanding of the mechanism of 18O exchange in muscle fibers requires an understanding of the mechanism of 18O exchange in the simpler in vitro systems employing myosin subfragment 1 (S-1) and heavy meromyosin (HMM). In the present study, using both S-1 and S-1 covalently cross-linked to actin, we show first that over a wide range of temperature, ionic strength, and actin concentration there is only one pathway of 18O exchange with S-1. This is also the case with HMM except at very low ionic strength and low actin concentration, and even here, the data can be explained if 20% of the HMM is denatured in such a way that it shows no 18O exchange. Our results also show that actin markedly decreases the rate of 18O exchange. If it is assumed that Pi release is rate limiting, the four-state kinetic model of the actomyosin ATPase cannot fit these 18O exchange data. However, if it is assumed that the ATP hydrolysis step is rate limiting and Pi release is very fast, the four-state kinetic model can qualitatively fit these data although the fit is not perfect. A better fit to the 18O exchange data can be obtained with the six-state kinetic model of the actomyosin ATPase, but this fit requires the assumption that, at saturating actin concentration, the rate of Pi rotation is about 9-fold slower than the rate of reversal of the ATP hydrolysis step.  相似文献   

15.
16.
17.
New data are reviewed on intermediate filaments, i.e. on one of the cytoskeleton components. Structural proteins of intermediate filaments, their enzymatic modification, filament-associated proteins and the peculiarities of filament assembly are dealt with. The regularities of expression of intermediate filament proteins in normal tissues are analysed, as well as during differentiation and cultured cell growth. In the final part of the paper possible functions of intermediate filaments are discussed.  相似文献   

18.
The active movement of fluorescence-labeled actin filaments along thick filaments isolated from molluscan smooth muscle was observed. Along a single thick filament, actin filaments moved toward the center of the thick filament at the speed of 1.19 +/- 0.38 microns s-1 (mean +/- SD, n = 42) and detached themselves from it upon reaching the central zone. Movement of actin also occurred in the opposite direction, i.e., away from the center, albeit at a much lower velocity (0.09 +/- 0.07 microns s-1, n = 17). Thus, the thick filament shows functional bipolarity in terms of velocity but does not determine the direction of the movement.  相似文献   

19.
We measured the lengths of actin filaments formed by spontaneous polymerization of highly purified actin monomers by fluorescence microscopy after labeling with rhodamine-phalloidin. The length distributions are exponential with a mean of approximately 7 microm (2600 subunits). This length is independent of the initial concentration of actin monomer, an observation inconsistent with a simple nucleation-elongation mechanism. However, with the addition of physically reasonable rates of filament annealing and fragmenting, a nucleation-elongation mechanism can reproduce the observed average length of filaments in two types of experiments: 1) filaments formed from a wide range of highly purified actin monomer concentrations, and 2) filaments formed from 24 microM actin over a range of CapZ concentrations.  相似文献   

20.
Mice fed griseofulvin, an antibiotic with antimicrotubular activity, formed hepatocellular aggregates of intermediate filaments, which resembled those associated with human alcoholic liver disease. These aggregates, termed Mallory bodies, were isolated from both human and mouse liver and the composition of these structures compared. Electrophoretic analysis indicated that the mouse filaments were composed of four major polypeptides (51,000, 47,000, 37,000, and 36,000 daltons). Human Mallory bodies possessed a similar number of components but of different molecular weights (56,000, 51,000, 50,000, and 38,000 daltons). Guinea pig antisera prepared against both whole human Mallory bodies and the major human polypeptide (56,000 daltons) crossreacted with mouse Mallory body material in both immunochemical and immunocytochemical systems. Our findings suggest that the two filament systems possess similar biochemical and immunological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号