首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pattern of tonic and phasic components in an EMG signal reflects the underlying behaviour of the central nervous system (CNS) in controlling the musculature. One avenue for gaining a better understanding of this behaviour is to seek a quantitative characterisation of these phasic and tonic components. We propose that these signal characteristics can range between unvarying, tonic and intermittent, phasic activation through a continuum of EMG amplitude modulation. In this paper, we present two new algorithms for quantifying amplitude modulation: a linear-envelope approach, and a mathematical morphology approach. In addition we present an algorithm for synthesising EMG signals with known amplitude modulation. The efficacy of the synthesis algorithm is demonstrated using real EMG data. We present an evaluation and comparison of the two algorithms for quantifying amplitude modulation based on synthetic data generated by the proposed synthesis algorithm. The results demonstrate that the EMG synthesis parameters represent 91.9% and 96.2% of the variance of linear-envelopes extracted from lumbo-pelvic muscle EMG signals collected from subjects performing a repetitive-movement task. This depended, however, on the muscle and movement-speed considered (F = 4.02, p < 0.001). Coefficients of determination between input and output amplitude modulation variables were used to quantify the accuracy of the linear-envelope and morphological signal processing algorithms. The linear-envelope algorithm exhibited higher coefficients of determination than the most accurate morphological approach (and hence greater accuracy, T = 8.16, p < 0.001). Similarly, the standard deviation of the coefficients of determination was 1.691 times smaller (p < 0.001). This signal processing algorithm represents a novel tool for the quantification of amplitude modulation in continuous EMG signals and can be used in the study of CNS motor control of the musculature in repetitive-movement tasks.  相似文献   

2.
A relationship exists between muscles of the lumbar spine and those of the lower extremity where the quadriceps become more inhibited after lumbar paraspinal. The purpose of this experiment was to compare surface electromyography (sEMG) total frequency content after lumbar paraspinal fatiguing exercise. Scope: 50 subjects performed fatiguing lumbar extension exercise indexed by downward shifts in median frequency calculated from lumbar paraspinal sEMG signal. Before and after each exercise set we recorded maximal, isometric knee extension torque and quadriceps central activation ratio (QI) using the superimposed burst technique while recording vastus lateralis sEMG. We calculated total frequency content of the sEMG signal (fEMGTOTAL) as the area of the quadriceps sEMG frequency spectrum. Quadriceps fEMGTOTAL decreased from baseline following the first and second exercise sets. There was no significant change in quadriceps sEMG median frequency among baseline and post-exercise measures. The change in fEMGTOTAL was correlated with the change in QI following the first (r = ?0.41, P = 0.003) and second (r = ?0.32, P = 0.02) exercise sets. Conclusion: Quadriceps fEMGTOTAL decreased following fatiguing lumbar extension exercise, in the absence of a significant change in quadriceps median frequency.  相似文献   

3.
PurposeTo measure the environmental doses from stray neutrons in the vicinity of a solid slab phantom as a function of beam energy, field size and modulation width, using the proton pencil beam scanning (PBS) technique.MethodMeasurements were carried out using two extended range WENDI-II rem-counters and three tissue equivalent proportional counters. Detectors were suitably placed at different distances around the RW3 slab phantom. Beam irradiation parameters were varied to cover the clinical ranges of proton beam energies (100–220 MeV), field sizes ((2 × 2)–(20 × 20) cm2) and modulation widths (0–15 cm).ResultsFor pristine proton peak irradiations, large variations of neutron H1(10)/D were observed with changes in beam energy and field size, while these were less dependent on modulation widths. H1(10)/D for pristine proton pencil beams varied between 0.04 μSv Gy−1 at beam energy 100 MeV and a (2 × 2) cm2 field at 2.25 m distance and 90° angle with respect to the beam axis, and 72.3 μSv Gy−1 at beam energy 200 MeV and a (20 × 20) cm2 field at 1 m distance along the beam axis.ConclusionsThe obtained results will be useful in benchmarking Monte Carlo calculations of proton radiotherapy in PBS mode and in estimating the exposure to stray radiation of the patient. Such estimates may be facilitated by the obtained best-fitted simple analytical formulae relating the stray neutron doses at points of interest with beam irradiation parameters.  相似文献   

4.
《IRBM》2014,35(3):158-163
The main objective of this paper was to assess the performance of the ambulatory device μHematron to measure indirectly skin blood flow relative to the well-established Laser Doppler flowmetry method. The μHematron device is dedicated to the non-invasive measurement of effective thermal conductivity of living tissues, based on the thermal clearance method. Its major advantage is its ambulatory functionality, as available methods for evaluation of microcirculatory activity are non-ambulatory methods. An experiment was conducted on ten healthy women exposed for one hour in three different thermal environments (22 °C, 25 °C and 30 °C). Skin microcirculatory activity was analyzed after an acclimatization period of 30 minutes. The time between each exposure was at least one hour. Performances of the μHematron device were assessed and a comparative study with a laser Doppler perfusion monitor (LDPM) was performed. Good correlation coefficients between the two devices (r = 0.71 at T1 = 22 °C, r = 0.77 at T2 = 25 °C and r = 0.83 at T3 = 30 °C) were obtained while the LDPM signal was filtered by a low pass filter (0.1 Hz). These results showed that continuous monitoring of effective thermal conductivity was possible in neutral and warm ambiences. Then, the μHematron device could be considered as a complementary tool to Doppler techniques for the investigation of skin blood flow, when ambulatory conditions are required.  相似文献   

5.
During gait, a failure to acknowledge the low-frequency component of a segmental acceleration signal will result in an overestimation of impact-related shock and may lead to inappropriately drawn conclusions. The present study was undertaken to investigate the significance of this low-frequency component in two distinctly different modalities of gait: barefoot (BF) and shod (SHOD) walking. Twenty-seven participants performed five walking trials at self-selected speed in each condition. Peak positive accelerations (PPA) at the shank and spine were first derived from the time-domain signal. The raw acceleration signals were then resolved in the frequency-domain and the active (low-frequency) and impact-related components of the power spectrum density (PSD) were quantified. PPA was significantly higher at the shank (P < 0.0001) and spine (P = 0.0007) in the BF condition. In contrast, no significant differences were apparent between conditions for shank (P = 0.979) or spine (P = 0.178) impact-related PSD when the low-frequency component was considered. This disparity between approaches was due to a significantly higher active PSD in both signals in the BF condition (P < 0.0001; P = 0.008, respectively), due to kinematic differences between conditions (P < 0.05). These results indicate that the amplitude of the low-frequency component of an acceleration signal during gait is dependent on knee and ankle joint coordination behaviour, and highlight that impact-related shock is more accurately quantified in the frequency-domain following subtraction of this component.  相似文献   

6.
《Aquatic Botany》2007,87(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

7.
Adenosine receptors (ARs) trigger signal transduction pathways inside the cell when activated by extracellular adenosine. Selective modulation of the A3AR subtype may be beneficial in controlling diseases such as colorectal cancer and rheumatoid arthritis. Here, we report the synthesis and evaluation of β-d-apio-d-furano- and α-d-apio-l-furanoadenosines and derivatives thereof. Introduction of a 2-methoxy-5-chlorobenzyl group at N6 of β-d-apio-d-furanoadenosine afforded an A3AR antagonist (10c, Ki = 0.98 μM), while a similar modification of an α-d-apio-l-furanoadenosine gave rise to a partial agonist (11c, Ki = 3.07 μM). The structural basis for this difference was examined by docking to an A3AR model; the antagonist lacked a crucial interaction with Thr94.  相似文献   

8.
In recent years, the removal of electrocardiogram (ECG) interferences from electromyogram (EMG) signals has been given large consideration. Where the quality of EMG signal is of interest, it is important to remove ECG interferences from EMG signals. In this paper, an efficient method based on a combination of adaptive neuro-fuzzy inference system (ANFIS) and wavelet transform is proposed to effectively eliminate ECG interferences from surface EMG signals. The proposed approach is compared with other common methods such as high-pass filter, artificial neural network, adaptive noise canceller, wavelet transform, subtraction method and ANFIS. It is found that the performance of the proposed ANFIS–wavelet method is superior to the other methods with the signal to noise ratio and relative error of 14.97 dB and 0.02 respectively and a significantly higher correlation coefficient (p < 0.05).  相似文献   

9.
《Aquatic Botany》2008,88(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

10.
Maize is one of the most widespread grain crops in the world; however, more than 70% of corn in China suffers some degree of drought disaster every year. Leaf area index (LAI) is an important biophysical parameter of the vegetation canopy and has important significance for crop yield estimation. Using the data of canopy spectral reflectance and leaf area index (LAI) for maize plants experiencing different levels of soil moisture from 2011 to 2012, the characteristics of the canopy reflective spectrum and its first derivative, and their relationships to leaf area index, were analyzed. Soil moisture of the control group was about 75% while that of the drought stress treatment was about 45%. In addition, LAI retrieval models for maize were established using vegetation indices (VIs) and principal component analysis (PCA) and the models were tested using independent datasets representing different soil water contents and different developmental stages of maize. The results showed that canopy spectral reflectances were in accordance with the characteristics of green plants, under both drought stress and at different developmental stages. In the visible band, canopy reflectance for both healthy and damaged vegetation had a green-wavelength peak and a red-wavelength valley; reflectance under drought stress, especially in the green peak (about 550 nm) and the red valley (about 676 nm) was higher than in the control group. In the near-infrared band, the canopy spectral reflectance decreased substantially between 780 and 1350 nm under drought stress. Moreover, the red edge of the spectrum was shifted toward blue wavelengths. The first derivative spectrum showed a double peak phenomenon at the edge of the red band at different developmental stages: the main peak appeared between 728 and 732 nm and the minor peak at about 718 nm. The double peaks become more obvious through the growth and development of the maize, with the most notable effect during the silking and milk stages, after which it gradually decreased. During maize growth, the LAI of all plants, regardless of soil moisture conditions, increased, and the largest LAI also occurred during the silking and milk stages. During those stages, the LAI of plants under different drought stress levels was significantly lower (by 20% or more) than in normal plants with sufficient water supplies. The LAI was highly significantly correlated with canopy spectral reflectance in the bands from 350 nm to 510 nm, from 571 nm to 716 nm, and from 1450 nm to 1575 nm. Also, the LAI was significantly correlated with red edge parameters and several VIs. The Perpendicular Vegetation Index (PVI) had the best correlation with LAI, with a coefficient of determination (R2) of 0.726 for the exponential correlation. Using dependent data, a LAI monitoring model for the maize canopy was constructed using PCA and VI methods. The test results showed that both the VI and PCA methods of monitoring maize LAI could provide robust estimates, with the predicted values of LAI being significantly correlated with the measured values. The model based on PVI showed higher precision under the drought stresses, with a correlation coefficient of 0.893 (n = 27), while the model based on PCA was more precise under conditions of adequate soil moisture, with a correlation coefficient of 0.877 (n = 32). Therefore, a synthesis of the models based on both VI and PCA could be more reliable for precisely predicting LAI under different levels of drought stresses in maize.  相似文献   

11.
Minimum toe clearance (MTC) is thought to quantify the risk of the toe contacting the ground during the swing phase of gait and initiating a trip, but there are methodological issues with this measure and the risk of trip-related falls has been shown to also be associated with gait speed and dynamic stability. This paper proposes and evaluates a new measure, trip risk integral (TRI), that circumvents many issues with MTC as typically calculated at a single point by considering minimum foot clearance across the entire swing phase and taking into account dynamic stability to estimate risk of falling due to a trip rather than risk of the foot contacting the floor. Shoes and floor surfaces were digitized and MTC and TRI calculated for unimpaired younger (N = 14, age = 26 ± 5), unimpaired older (N = 14, age = 73 ± 7), and older adults who had recently fallen (N = 11, age = 72 ± 5) walking on surfaces with no obstacles, visible obstacles, and hidden obstacles at slow, preferred, and fast gait speeds. MTC and TRI had significant (F  5, p  0.005) but differing effects of gait speed and floor surface. As gait speed increased (which increases risk of trip-related falls) MTC indicated less and TRI greater risk, indicating that TRI better quantifies risk of falling due to a trip. While MTC and TRI did not differ by subject group, strong speed-related effects of TRI (F  8, p  0.0007) resulted in improved TRI for fallers due to their slower self-selected preferred gait. This demonstrates that slower gait is both an important covariate and potential intervention for trip-related falls.  相似文献   

12.
The purpose of this analysis was to empirically model and graphically illustrate the numerical relationships between richness (S, 4–35 species) and evenness (E) with respect to Shannon–Wiener index (H′, loge-based) values. Thirty-two richness-based third-order polynomial regression models (R > 0.99, P < 0.001, n = 28–71) were constructed to characterize these relationships. A composite diagram showed richness varied curvilinearly, with steepness increasing and the spacing between curves decreasing with greater evenness and H′. Maximum H′ values for each richness curve were equal to loge S (when E = 1), whereas minima were approximated by evenness values of ∼1/S (when H = 0). It was concluded from multiple and polynomial regression analyses that: (i) evenness contributed more than richness (E:S ≥3:1) to determining H′, based on standardized partial beta-coefficients; (ii) the differential in E:S ratios increased with greater richness; (iii) the patterns of H′ sample variation between maximum unevenness and perfect evenness was convexo-concave shaped; and (iv) richness as an explanatory variable of H′ was likely an artifact of evenness (0–1 scale) being rescaled according to individual H′ maxima. H′ was redefined as a logarithm-weighted measure of evenness at a given level of richness, which means H′ is either an imperfect index of diversity or a biased measure of evenness. It was also found that the fundamental components of the Shannon–Wiener index measure dominance concentration rather than evenness, with the reversal in emphasis due to multiplication of the H′ equation by −1. H′-derived effective species numbers (exp H′, D) increasingly deviated from those of the diversity model D = S × E in response to increasing richness (up to 69% for 35 species), particularly when evenness was between 0.15 and 0.40. Of two cross-validated H′ prediction methods (P < 0.001, n = 325), the collective use of individual richness-based polynomial regression equations (r = 0.954) was better than a single multiple regression model that incorporated a broad spectrum of richness levels (r = 0.882). A simple graphic model was constructed to illustrate patterns of evenness variation as a function of changing richness and H′ values. Based on the identified biases, particularly E:S ratios, it was recommended that use of H′ be discontinued as a basis for assessing diversity in ecological research or, at the very least, accompanied by independent analyzes of richness and evenness.  相似文献   

13.
ObjectiveThis study makes a comparative analysis of the quality reconstruction of three software: 2D ordered subset expectation maximisation (2D OSEM), 3D ordered subsets expectation maximisation (Flash 3D) and Wallis.Patients and methodsThe data from myocardial scintigraphy acquisitions of 50 patients (38 men and 12 women; average age 61 ± 9 years) were successively reconstructed using three myocardial perfusion SPECT algorithms (Flash 3D, OSEM 2D and Wallis). Different combinations of iterations and subsets were considered. For Wallis, only the cut-off frequency was considered. The image's quality was assessed by determining the maximum contrast and the signal to noise ratio.ResultsThe Wallis software provided a higher signal to noise ratio compared to Flash 3D and OSEM 2D at stress and rest. The Wallis signal to noise ratio increased by a factor 1.93 (P = 0.0010) and 2.28 at stress (P = 0.0009); 1.50 (P = 0.0011) and 2.84 at rest (P = 0.0024) compared to respectively Flash 3D and OSEM 2D. Flash 3D provided better signal to noise ratio than OSEM 2D at stress and at rest. The difference in medians and interquartile ranges of the signal-to-noise ratio in post-stress were 22 % and 54 %, respectively between Flash 3D and OSEM 2D. At rest, the difference between the two methods in signal to noise ratio was 32 % ± 0.,29.ConclusionWallis algorithm was improve image quality with better signal to noise ratio compared to the reference method of Siemens Flash 3D. For both Flash 3D and OSEM 2D methods, the combination with 8 subsets and 12 iterations provided the best contrast and signal to noise ratio.  相似文献   

14.
In this paper, glutamate dehydrogenase (Gldh) is reported to efficiently display on Escherichia coli cell surface by using N-terminal region of ice the nucleation protein as an anchoring motif. The presence of Gldh was confirmed by SDS-PAGE and enzyme activity assay. Gldh was detected mainly in the outer membrane fraction, suggesting that the Gldh was displayed on the bacterial cell surface. The optimal temperature and pH for the bacteria cell-surface displayed Gldh (bacteria-Gldh) were 70 °C and 9.0, respectively. Additionally, the fusion protein retained almost 100% of its initial enzymatic activity after 1 month incubation at 4 °C. Transition metal ions could inhibit the enzyme activity to different extents, while common anions had little adverse effect on enzyme activity. Importantly, the displayed Gldh is most specific to l-glutamate reported so far. The bacterial Gldh was enabled to catalyze oxidization of l-glutamate with NADP+ as cofactor, and the resultant NADPH can be detected spectrometrically at 340 nm. The bacterial-Gldh based l-glutamate assay was established, where the absorbance at 340 nm increased linearly with the increasing l-glutamate concentration within the range of 10  400 μM. Further, the proposed approach was successfully applied to measure l-glutamate in real samples.  相似文献   

15.
In this study, we designed and applied molecular biosensors for heavy metals, zinc and copper, for use in bioremediation strategies. Bacteria utilize two component systems to sense changes in the environment by multiple signal components including heavy metals and control gene expression in response to changes in signal molecules. zraP and cusC promoters were selected from a genetic circuit of the ZraSR and CusSR two-component system and were fused to a dual-labeling reporter protein as an interactive biological component for zinc and copper to generate a signal from the constructed biosensor. The biosensor efficiently senses zinc and copper with a calculated detection limit of 16 μM and 26 μM, respectively, and was shown to be a sensitive and effective heavy metal monitoring bacterial system. To extend the application of the bacterial biosensor, we assembled a bioadsorption system that can trigger bacteria to sense and adsorb 13 ± 0.3 mg/L of zinc and 11.4 ± 0.42 mg/L of copper per gram of dry cell weight with induction at a concentration of 100 mg/L of the respective metal ion.  相似文献   

16.
We developed a methodology for analyzing the C-toxin (C2) content in single Alexandrium tamarense cells; this method was based on high performance liquid chromatography (HPLC). C2 is the main paralytic shellfish toxin (PST) detected in a clonal culture of A. tamarense, which is a common causative organism in cases of paralytic shellfish poisoning in Japan. This HPLC method employs post-column fluorescent derivatization (FL). Mobile phase, column size, flow rate, reagent concentrations, and lamp type for the fluorescent detector were all optimized for the detection of C2. With this improved methodology, we could measure 1 fmol of C2 with a signal to noise ratio (S/N) = 2. Clonal heterogeneity within the toxic strain, which was maintained for 13 years after re-isolation from the original clonal culture, ranged from <1 fmol to 700 fmol cell−1. This report is the first to demonstrate definitively that PST content varies on a cell-by-cell basis in a clonal culture of a dinoflagellate that causes paralytic shellfish poisoning.  相似文献   

17.
This prospective study examined normalized stability differences based on dominance side and visual feedback. Subjects with low back pain (LBP) (n = 26; 9 men, 17 women) and without LBP (n = 28; 11 men, 17 women) participated in this study. All subjects were asked to maintain single leg standing balance with the contralateral hip flexed 90° for 25 s. The outcome measures included normalized holding duration and stability. The combined rotation (Rxyz) was also calculated to compare the upper and lower thorax and lumbar axes relative to the core spine axis. The holding duration was significantly different between groups (T = ?2.21, p = 0.03). The subjects without recurrent LBP (control group) demonstrated longer hold duration times (24.60 ± 4.2 s) than the subjects with recurrent LBP (21.2 ± 7.1 s). For the normalized hold duration, there was a significant difference between groups based on visual input (F = 7.13, p = 0.009). There was also a significant difference in standing stability based on visual input (F = 93.93, p = 0.0001) and trunk area (F = 101.51, p = 0.0001). In addition, the normalized stability was significantly different based on dominance and visual input (F = 11.28, p = 0.002). Therefore, trunk stability could prompt an uncoordinated bracing effect with poor proprioception from injury to passive structures or due to interference of pain during central processing of information in subjects with recurrent LBP.  相似文献   

18.
Heterologous production of large multidomain proteins from higher plants is often cumbersome. Barley limit dextrinase (LD), a 98 kDa multidomain starch and α-limit dextrin debranching enzyme, plays a major role in starch mobilization during seed germination and is possibly involved in starch biosynthesis by trimming of intermediate branched α-glucan structures. Highly active barley LD is obtained by secretory expression during high cell-density fermentation of Pichia pastoris. The LD encoding gene fragment without signal peptide was subcloned in-frame with the Saccharomyces cerevisiae α-factor secretion signal of the P. pastoris vector pPIC9K under control of the alcohol oxidase 1 promoter. Optimization of a fed-batch fermentation procedure enabled efficient production of LD in a 5-L bioreactor, which combined with affinity chromatography on β-cyclodextrin–Sepharose followed by Hiload Superdex 200 gel filtration yielded 34 mg homogenous LD (84% recovery). The identity of the recombinant LD was verified by N-terminal sequencing and by mass spectrometric peptide mapping. A molecular mass of 98 kDa was estimated by SDS–PAGE in excellent agreement with the theoretical value of 97419 Da. Kinetic constants of LD catalyzed pullulan hydrolysis were found to Km,app = 0.16 ± 0.02 mg/mL and kcat,app = 79 ± 10 s?1 by fitting the uncompetitive substrate inhibition Michaelis–Menten equation, which reflects significant substrate inhibition and/or transglycosylation. The resulting catalytic coefficient, kcat,app/Km,app = 488 ± 23 mL/(mg s) is 3.5-fold higher than for barley malt LD. Surface plasmon resonance analysis showed α-, β-, and γ-cyclodextrin binding to LD with Kd of 27.2, 0.70, and 34.7 μM, respectively.  相似文献   

19.
Scope: Daily bilateral electromyography (EMG) recordings reveal muscle activation patterns implicated in asymmetric Parkinson’s disease (PD)-related functional decline. Also, daily EMG recordings reveal sex-differences in muscle activity that give rise to unique PD presentation in males and females. Purpose: Quantify handgrip strength and daily muscle quiescence through analysis of gaps in the EMG signal in males and females with PD. Bilateral daily EMG was recorded and normalized to maximal voluntary exertions (MVE). EMG gap was defined as <1% amplitude of MVE for >0.1 s and characterized as number, duration and time occupied by gaps. A dynamometer evaluated maximal grip-strength. Three-way repeated measures ANOVA examined differences in gap characteristics and strength. Gap duration was shorter (p = 0.04) and occupied less time (p = 0.02) in PD than controls. Females had fewer gaps with shorter duration (p = 0.004), occupying less time (p = 0.004) compared with males. Gaps were fewer (p = 0.04) and occupied less time (p = 0.01) on more-affected than less-affected side. PD was weaker than controls (p = 0.04), females were weaker than males (p = 0.00), and the more-affected PD side was weaker than less-affected (p = 0.04). Conclusions: Quantification of muscle quiescence through gaps in the EMG signal recorded during daily life provides insight into mechanisms underlying differential change in functional performance in males and females with PD.  相似文献   

20.
The aim of the present study was to determine whether any specific frequency bands of surface electromyographic (sEMG) signals are more susceptible to alterations in patients with temporomandibular disorders (TMD), when compared with healthy subjects. Twenty-seven healthy adults (19 women and eight men; mean age: 23 ± 6.68 years) and 27 TMD patients (20 women and seven men; mean age: 24 ± 5.89 years) voluntarily participated in the experiment. sEMG data were recorded from the right and left masseter muscles (RM and LM) and the right and left anterior temporalis muscles (RT and LT) as the participants performed tests of chewing (CHW) and maximal clenching effort (MCE). Frequency domain analysis of the sEMG signal was used to analyze differences between TMD patients and healthy subjects in relation to the Power Spectral Density Function (PSDF). The analysis focused on the median frequency (MDF) of the sEMG signal and PSDF frequency bands after the EMG spectrum was divided into twenty-five frequency band of 20 Hz each. The Mann-Whitney test was used to compare MDF between TMD patients and healthy subjects and the frequency bands were analyzed using three-way ANOVA with three factors: frequency band, muscle and group. The results of the analysis confirmed that the median frequency values in TMD patients were significantly higher (p < 0.05) than those recorded for healthy subjects in the two experimental conditions (MCE and CHW), for all of the muscles assessed (RM, LM, RT and LT). In addition, frequency content between 20 and 100 Hz of the normalized PSDF range was significantly lower (p < 0.05) in TMD patients than in healthy. This study contributes to quantitatively identify TMD dysfunctions, by non-invasive sEMGs; this assessment is clinically important and still lacking nowadays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号