首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current study examined selective encoding in visual working memory by systematically investigating interference from task-irrelevant features. The stimuli were objects defined by three features (color, shape, and location), and during a delay period, any of the features could switch between two objects. Additionally, single- and whole-probe trials were randomized within experimental blocks to investigate effects of memory retrieval. A series of relevant-feature switch detection tasks, where one feature was task-irrelevant, showed that interference from the task-irrelevant feature was only observed in the color-shape task, suggesting that color and shape information could be successfully filtered out, but location information could not, even when location was a task-irrelevant feature. Therefore, although location information is added to object representations independent of task demands in a relatively automatic manner, other features (e.g., color, shape) can be flexibly added to object representations.  相似文献   

2.
Visual working memory can be modulated according to changes in the cued task relevance of maintained items. Here, we investigated the mechanisms underlying this modulation. In particular, we studied the consequences of attentional selection for selected and unselected items, and the role of individual differences in the efficiency with which attention is deployed. To this end, performance in a visual working memory task as well as the CDA/SPCN and the N2pc, ERP components associated with visual working memory and attentional processes, were analysed. Selection during the maintenance stage was manipulated by means of two successively presented retrocues providing spatial information as to which items were most likely to be tested. Results show that attentional selection serves to robustly protect relevant representations in the focus of attention while unselected representations which may become relevant again still remain available. Individuals with larger retrocueing benefits showed higher efficiency of attentional selection, as indicated by the N2pc, and showed stronger maintenance-associated activity (CDA/SPCN). The findings add to converging evidence that focused representations are protected, and highlight the flexibility of visual working memory, in which information can be weighted according its relevance.  相似文献   

3.
The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.  相似文献   

4.

Background

How do people sustain a visual representation of the environment? Currently, many researchers argue that a single visual working memory system sustains non-spatial object information such as colors and shapes. However, previous studies tested visual working memory for two-dimensional objects only. In consequence, the nature of visual working memory for three-dimensional (3D) object representation remains unknown.

Methodology/Principal Findings

Here, I show that when sustaining information about 3D objects, visual working memory clearly divides into two separate, specialized memory systems, rather than one system, as was previously thought. One memory system gradually accumulates sensory information, forming an increasingly precise view-dependent representation of the scene over the course of several seconds. A second memory system sustains view-invariant representations of 3D objects. The view-dependent memory system has a storage capacity of 3–4 representations and the view-invariant memory system has a storage capacity of 1–2 representations. These systems can operate independently from one another and do not compete for working memory storage resources.

Conclusions/Significance

These results provide evidence that visual working memory sustains object information in two separate, specialized memory systems. One memory system sustains view-dependent representations of the scene, akin to the view-specific representations that guide place recognition during navigation in humans, rodents and insects. The second memory system sustains view-invariant representations of 3D objects, akin to the object-based representations that underlie object cognition.  相似文献   

5.
Working memory refers to the temporary retention of information that was just experienced or just retrieved from long-term memory but no longer exists in the external environment. These internal representations are short-lived, but can be stored for longer periods of time through active maintenance or rehearsal strategies, and can be subjected to various operations that manipulate the information in such a way that makes it useful for goal-directed behaviour. Empirical studies of working memory using neuroscientific techniques, such as neuronal recordings in monkeys or functional neuroimaging in humans, have advanced our knowledge of the underlying neural mechanisms of working memory. This rich dataset can be reconciled with behavioural findings derived from investigating the cognitive mechanisms underlying working memory. In this paper, I review the progress that has been made towards this effort by illustrating how investigations of the neural mechanisms underlying working memory can be influenced by cognitive models and, in turn, how cognitive models can be shaped and modified by neuroscientific data. One conclusion that arises from this research is that working memory can be viewed as neither a unitary nor a dedicated system. A network of brain regions, including the prefrontal cortex (PFC), is critical for the active maintenance of internal representations that are necessary for goal-directed behaviour. Thus, working memory is not localized to a single brain region but probably is an emergent property of the functional interactions between the PFC and the rest of the brain.  相似文献   

6.
Prior studies have shown that spatial attention modulates early visual cortex retinotopically, resulting in enhanced processing of external perceptual representations. However, it is not clear whether the same visual areas are modulated when attention is focused on, and shifted within a working memory representation. In the current fMRI study participants were asked to memorize an array containing four stimuli. After a delay, participants were presented with a verbal cue instructing them to actively maintain the location of one of the stimuli in working memory. Additionally, on a number of trials a second verbal cue instructed participants to switch attention to the location of another stimulus within the memorized representation. Results of the study showed that changes in the BOLD pattern closely followed the locus of attention within the working memory representation. A decrease in BOLD-activity (V1-V3) was observed at ROIs coding a memory location when participants switched away from this location, whereas an increase was observed when participants switched towards this location. Continuous increased activity was obtained at the memorized location when participants did not switch. This study shows that shifting attention within memory representations activates the earliest parts of visual cortex (including V1) in a retinotopic fashion. We conclude that even in the absence of visual stimulation, early visual areas support shifting of attention within memorized representations, similar to when attention is shifted in the outside world. The relationship between visual working memory and visual mental imagery is discussed in light of the current findings.  相似文献   

7.
Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory.  相似文献   

8.
Neurophysiological studies focus on memory retrieval as a reproduction of what was experienced and have established that neural discharge is replayed to express memory. However, cognitive psychology has established that recollection is not a verbatim replay of stored information. Recollection is constructive, the product of memory retrieval cues, the information stored in memory, and the subject''s state of mind. We discovered key features of constructive recollection embedded in the rat CA1 ensemble discharge during an active avoidance task. Rats learned two task variants, one with the arena stable, the other with it rotating; each variant defined a distinct behavioral episode. During the rotating episode, the ensemble discharge of CA1 principal neurons was dynamically organized to concurrently represent space in two distinct codes. The code for spatial reference frame switched rapidly between representing the rat''s current location in either the stationary spatial frame of the room or the rotating frame of the arena. The code for task variant switched less frequently between a representation of the current rotating episode and the stable episode from the rat''s past. The characteristics and interplay of these two hippocampal codes revealed three key properties of constructive recollection. (1) Although the ensemble representations of the stable and rotating episodes were distinct, ensemble discharge during rotation occasionally resembled the stable condition, demonstrating cross-episode retrieval of the representation of the remote, stable episode. (2) This cross-episode retrieval at the level of the code for task variant was more likely when the rotating arena was about to match its orientation in the stable episode. (3) The likelihood of cross-episode retrieval was influenced by preretrieval information that was signaled at the level of the code for spatial reference frame. Thus key features of episodic recollection manifest in rat hippocampal representations of space.  相似文献   

9.
One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants’ episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary.  相似文献   

10.
The prefrontal cortex and basal ganglia are deeply implicated in working memory. Both structures are subject to dopaminergic neuromodulation in a way that exerts a critical influence on the proper operation of working memory. We present a novel network model to elucidate the role of phasic dopamine in the interaction of these two structures in initiating and maintaining mnemonic activity. We argue that neuromodulation plays a critical role in protecting memories against both internal and external sources of noise. Increases in cortical gain engendered by prefrontal dopamine release help make memories robust against external distraction, but do not offer protection against internal noise accompanying recurrent cortical activity. Rather, the output of the basal ganglia provides the gating function of stabilization against noise and distraction by enhancing select memories through targeted disinhibition of cortex. Dopamine in the basal ganglia effectively locks this gate by influencing the stability of up and down states in the striatum. Dopamine's involvement in affective processing endows this gating with specificity to motivational salience. We model a spatial working memory task and show that these combined effects of dopamine lead to superior performance. Action editor: Misha V. Tsodyks  相似文献   

11.

Introduction

The default mode network and the working memory network are known to be anti-correlated during sustained cognitive processing, in a load-dependent manner. We hypothesized that functional connectivity among nodes of the two networks could be dynamically modulated by task phases across time.

Methods

To address the dynamic links between default mode network and the working memory network, we used a delayed visuo-spatial working memory paradigm, which allowed us to separate three different phases of working memory (encoding, maintenance, and retrieval), and analyzed the functional connectivity during each phase within and between the default mode network and the working memory network networks.

Results

We found that the two networks are anti-correlated only during the maintenance phase of working memory, i.e. when attention is focused on a memorized stimulus in the absence of external input. Conversely, during the encoding and retrieval phases, when the external stimulation is present, the default mode network is positively coupled with the working memory network, suggesting the existence of a dynamically switching of functional connectivity between “task-positive” and “task-negative” brain networks.

Conclusions

Our results demonstrate that the well-established dichotomy of the human brain (anti-correlated networks during rest and balanced activation-deactivation during cognition) has a more nuanced organization than previously thought and engages in different patterns of correlation and anti-correlation during specific sub-phases of a cognitive task. This nuanced organization reinforces the hypothesis of a direct involvement of the default mode network in cognitive functions, as represented by a dynamic rather than static interaction with specific task-positive networks, such as the working memory network.  相似文献   

12.
Encoding strategies dissociate prefrontal activity from working memory demand   总被引:20,自引:0,他引:20  
Bor D  Duncan J  Wiseman RJ  Owen AM 《Neuron》2003,37(2):361-367
It is often proposed that prefrontal cortex is important in organization and control of working memory contents. In some cases, effective reorganization can decrease task difficulty, implying a dissociation between frontal activity and basic memory demand. In a spatial working memory task, we studied the improvement of performance that occurs when materials can be reorganized into higher level groups or chunks. Structured sequences, encouraging reorganization and chunking, were compared with unstructured sequences. Though structured sequences were easier to remember, event-related functional magnetic resonance imaging (fMRI) showed increased activation of lateral frontal cortex, in particular during memory encoding. The results show that, even when memory demand decreases, organization of working memory contents into higher level chunks is associated with increased prefrontal activity.  相似文献   

13.
Memory performance is usually impaired when participants have to encode information while performing a concurrent task. Recent studies using recall tasks have found that emotional items are more resistant to such cognitive depletion effects than non-emotional items. However, when recognition tasks are used, the same effect is more elusive as recent recognition studies have obtained contradictory results. In two experiments, we provide evidence that negative emotional content can reliably reduce the effects of cognitive depletion on recognition memory only if stimuli with high levels of emotional intensity are used. In particular, we found that recognition performance for realistic pictures was impaired by a secondary 3-back working memory task during encoding if stimuli were emotionally neutral or had moderate levels of negative emotionality. In contrast, when negative pictures with high levels of emotional intensity were used, the detrimental effects of the secondary task were significantly attenuated.  相似文献   

14.
This study evaluated the working memory performance of 18 patients experiencing their first onset of mild depression without treatment and 18 healthy matched controls. The results demonstrated that working memory impairment in patients with mild depression occurred when memorizing the position of a picture but not when memorizing the pictures themselves. There was no significant difference between the two groups in the emotional impact on the working memory, indicating that the attenuation of spatial working memory was not affected by negative emotion; however, cognitive control selectively affected spatial working memory. In addition, the accuracy of spatial working memory in the depressed patients was not significantly reduced, but the reaction time was significantly extended compared with the healthy controls. This finding indicated that there was no damage to memory encoding and function maintenance in the patients but rather only impaired memory retrieval, suggesting that the extent of damage to the working memory system and cognitive control abilities was associated with the corresponding depressive symptoms. The development of mild to severe depressive symptoms may be accompanied by spatial working memory damage from the impaired memory retrieval function extending to memory encoding and memory retention impairments. In addition, the impaired cognitive control began with an inadequate capacity to automatically process internal negative emotions and further extended to impairment of the ability to regulate and suppress external emotions. The results of the mood-congruent study showed that the memory of patients with mild symptoms of depression was associated with a mood-congruent memory effect, demonstrating that mood-congruent memory was a typical feature of depression, regardless of the severity of depression. This study provided important information for understanding the development of cognitive dysfunction.  相似文献   

15.
Integration is a fundamental working memory operation, requiring the insertion of information from one task into the execution of another concurrent task. Previous neuroimaging studies have suggested the involvement of left anterior prefrontal cortex (L-aPFC) in relation to working memory integration demands, increasing during presentation of information to be integrated (loading), throughout its maintenance during a secondary task, up to the integration step, and then decreasing afterward (unloading). Here we used short bursts of 5 Hz repetitive Transcranic Magnetic Stimulation (rTMS) to modulate L-aPFC activity and to assess its causal role in integration. During experimental blocks, rTMS was applied (N = 10) over L-aPFC or vertex (control site) at different time-points of a task involving integration of a preloaded digit into a sequence of arithmetical steps, and contrasted with a closely matched task without integration demand (segregation). When rTMS was applied during the loading phase, reaction times during secondary task were faster, without significant changes in error rates. RTMS instead worsened performance when applied during information unloading. In contrast, no effects were observed when rTMS was applied during the other phases of integration, or during the segregation condition. These results confirm the hypothesis that L-aPFC is causally and selectively involved in the integration of information in working memory. They additionally suggest that pre-integration loading and post-integration unloading of information involving this area may be active and resource-consuming processes.  相似文献   

16.
An implicit mapping of number to space via a “mental number line” occurs automatically in adulthood. Here, we systematically explore the influence of differing representations of quantity (no quantity, non-symbolic magnitudes, and symbolic numbers) and directional flow of stimuli (random flow, left-to-right, or right-to-left) on learning and attention via a match-to-sample working memory task. When recalling a cognitively demanding string of spatial locations, subjects performed best when information was presented right-to-left. When non-symbolic or symbolic numerical arrays were embedded in these spatial locations, and mental number line congruency prompted, this effect was attenuated and in some cases reversed. In particular, low-performing female participants who viewed increasing non-symbolic number arrays paired with the spatial locations exhibited better recall for left-to-right directional flow information relative to right-to-left, and better processing for the left side of space relative to the right side of space. The presence of symbolic number during spatial learning enhanced recall to a greater degree than non-symbolic number—especially for female participants, and especially when cognitive load is high—and this difference was independent of directional flow of information. We conclude that quantity representations have the potential to scaffold spatial memory, but this potential is subtle, and mediated by the nature of the quantity and the gender and performance level of the learner.  相似文献   

17.
Recent studies have led to the proposal that working memory operates not as a gateway between sensory input and long-term memory but as a workspace. The core of argument is that access to acquired knowledge and prior learning occurs before information becomes available to working memory. This proposition is a way to accomodate Baddeley's multiple component working memory model and the view that considers that working memory is nothing other than temporary activations of representations and procedures in long-term memory. However, this ‘workspace’ conception of working memory raises the question of the relationships between the central executive system and long-term memory.  相似文献   

18.

Background

This study explored whether the high-resolution representations created by visual working memory (VWM) are constructed in a coarse-to-fine or all-or-none manner. The coarse-to-fine hypothesis suggests that coarse information precedes detailed information in entering VWM and that its resolution increases along with the processing time of the memory array, whereas the all-or-none hypothesis claims that either both enter into VWM simultaneously, or neither does.

Methodology/Principal Findings

We tested the two hypotheses by asking participants to remember two or four complex objects. An ERP component, contralateral delay activity (CDA), was used as the neural marker. CDA is higher for four objects than for two objects when coarse information is primarily extracted; yet, this CDA difference vanishes when detailed information is encoded. Experiment 1 manipulated the comparison difficulty of the task under a 500-ms exposure time to determine a condition in which the detailed information was maintained. No CDA difference was found between two and four objects, even in an easy-comparison condition. Thus, Experiment 2 manipulated the memory array’s exposure time under the easy-comparison condition and found a significant CDA difference at 100 ms while replicating Experiment 1′s results at 500 ms. In Experiment 3, the 500-ms memory array was blurred to block the detailed information; this manipulation reestablished a significant CDA difference.

Conclusions/Significance

These findings suggest that the creation of high-resolution representations in VWM is a coarse-to-fine process.  相似文献   

19.
Zimmer U  Macaluso E 《Neuron》2005,47(6):893-905
Our brain continuously receives complex combinations of sounds originating from different sources and relating to different events in the external world. Timing differences between the two ears can be used to localize sounds in space, but only when the inputs to the two ears have similar spectrotemporal profiles (high binaural coherence). We used fMRI to investigate any modulation of auditory responses by binaural coherence. We assessed how processing of these cues depends on whether spatial information is task relevant and whether brain activity correlates with subjects' localization performance. We found that activity in Heschl's gyrus increased with increasing coherence, irrespective of whether localization was task relevant. Posterior auditory regions also showed increased activity for high coherence, primarily when sound localization was required and subjects successfully localized sounds. We conclude that binaural coherence cues are processed throughout the auditory cortex and that these cues are used in posterior regions for successful auditory localization.  相似文献   

20.
Cognitive processes do not occur in isolation. Interactions between cognitive processes can be observed as a cost in performance following a switch between tasks, a cost that is greatest when the cognitive requirements of the sequential tasks compete. Interestingly, the long-term mnemonic goals associated with specific cognitive tasks can also directly compete. For example, encoding the sequential order in which stimuli are presented in the commonly-utilised 2-Back working memory (WM) tasks is counter-productive to task performance, as this task requires the continual updating of the contents of one''s current mental set. Performance of this task consistently results in reduced activity within the medial temporal lobe (MTL), and this response is believed to reflect the inhibitory mnemonic component of the task. Conversely, there are numerous cognitive paradigms in which participants are explicitly instructed to encode incoming information and performance of these tasks reliably increases MTL activity. Here, we explore the behavioural cost of sequentially performing two tasks with conflicting long-term mnemonic goals and contrasting neural profiles within the MTL. We hypothesised that performing the 2-Back WM prior to a hippocampal-dependent memory task would impair performance on the latter task. We found that participants who performed the 2-Back WM task, prior to the encoding of novel verbal/face-name stimuli, recollected significantly fewer of these stimuli, compared to those who had performed a 0-Back control task. Memory processes believed to be independent of the MTL were unaffected. Our results suggest that the inhibition of MTL-dependent mnemonic function persists beyond the cessation of the 2-Back WM task and can alter performance on entirely separate and subsequently performed memory tasks. Furthermore, they indicate that performance of such tasks may induce a temporarily-sustained, virtual lesion of the hippocampus, which could be used as a probe to explore cognitive processes in the absence of hippocampal involvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号