首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Hevamine is a chitinase from the rubber tree Hevea brasiliensis. Its active site contains Asp125, Glu127, and Tyr183, which interact with the -1 sugar residue of the substrate. To investigate their role in catalysis, we have successfully expressed wild-type enzyme and mutants of these residues as inclusion bodies in Escherichia coli. After refolding and purification they were characterized by both structural and enzyme kinetic studies. Mutation of Tyr183 to phenylalanine produced an enzyme with a lower k(cat) and a slightly higher K(m) than the wild-type enzyme. Mutating Asp125 and Glu127 to alanine gave mutants with approximately 2% residual activity. In contrast, the Asp125Asn mutant retained substantial activity, with an approximately twofold lower k(cat) and an approximately twofold higher K(m) than the wild-type enzyme. More interestingly, it showed activity to higher pH values than the other variants. The X-ray structure of the Asp125Ala/Glu127Ala double mutant soaked with chitotetraose shows that, compared with wild-type hevamine, the carbonyl oxygen atom of the N-acetyl group of the -1 sugar residue has rotated away from the C1 atom of that residue. The combined structural and kinetic data show that Asp125 and Tyr183 contribute to catalysis by positioning the carbonyl oxygen of the N-acetyl group near to the C1 atom. This allows the stabilization of a positively charged transient intermediate, in agreement with a previous proposal that the enzyme makes use of substrate-assisted catalysis.  相似文献   

2.
Catalysis by ChiB, a family 18 chitinase from Serratia marcescens, involves a conformational change of Asp142 which is part of a characteristic D(140)XD(142)XE(144) sequence motif. In the free enzyme Asp142 points towards Asp140, whereas it rotates towards the catalytic acid, Glu144, upon ligand binding. Mutation of Asp142 to Asn reduced k(cat) and affinity for allosamidin, a competitive inhibitor. The X-ray structure of the D142N mutant showed that Asn142 points towards Glu144 in the absence of a ligand. The active site also showed other structural adjustments (Tyr10, Ser93) that had previously been observed in the wild-type enzyme upon substrate binding. The X-ray structure of a complex of D142N with allosamidin, a pseudotrisaccharide competitive inhibitor, was essentially identical to that of the wild-type enzyme in complex with the same compound. Thus, the reduced allosamidin affinity in the mutant is not caused by structural changes but solely by the loss of electrostatic interactions with Asp142. The importance of electrostatics was further confirmed by the pH dependence of catalysis and allosamidin inhibition. The pH-dependent apparent affinities for allosamidin were not correlated with k(cat), indicating that it is probably better to view the inhibitor as a mimic of the oxazolinium ion reaction intermediate than as a transition state analogue.  相似文献   

3.
Enzymatic features that determine transglycosylating activity have been investigated through site-directed mutagenesis studies on two family 18 chitinases, ChiA and ChiB from Serratia marcescens, with inherently little transglycosylation activity. The activity was monitored for the natural substrate (GlcNAc)(4) using mass spectrometry and HPLC. Mutation of the middle Asp in the diagnostic DxDxE motif, which interacts with the catalytic Glu during the catalytic cycle, yielded the strongly transglycosylating mutants ChiA-D313N and ChiB-D142N, respectively. Mutation of the same Asp(313/142) to Ala or the mutation of Asp(311/140) to either Asn or Ala had no or much smaller effects on transglycosylating activity. Mutation of Phe(396) in the +2 subsite of ChiA-D313N to Trp led to a severalfold increase in transglycosylation rate while replacement of aromatic residues with Ala in the aglycon (sugar acceptor-binding) subsites of ChiA-D313N and ChiB-D142N led to a clear reduction in transglycosylating activity. Taken together, these results show that the transglycosylation properties of family 18 chitinases may be manipulated by mutations that affect the configuration of the catalytic machinery and the affinity for sugar acceptors. The hypertransglycosylating mutant ChiA-D313N-F396W may find applications for synthetic purposes.  相似文献   

4.
Catalysis by ChiB, a family 18 chitinase from Serratia marcescens, involves a conformational change of Asp142 which is part of a characteristic D140XD142XE144 sequence motif. In the free enzyme Asp142 points towards Asp140, whereas it rotates towards the catalytic acid, Glu144, upon ligand binding. Mutation of Asp142 to Asn reduced kcat and affinity for allosamidin, a competitive inhibitor. The X-ray structure of the D142N mutant showed that Asn142 points towards Glu144 in the absence of a ligand. The active site also showed other structural adjustments (Tyr10, Ser93) that had previously been observed in the wild-type enzyme upon substrate binding. The X-ray structure of a complex of D142N with allosamidin, a pseudotrisaccharide competitive inhibitor, was essentially identical to that of the wild-type enzyme in complex with the same compound. Thus, the reduced allosamidin affinity in the mutant is not caused by structural changes but solely by the loss of electrostatic interactions with Asp142. The importance of electrostatics was further confirmed by the pH dependence of catalysis and allosamidin inhibition. The pH-dependent apparent affinities for allosamidin were not correlated with kcat, indicating that it is probably better to view the inhibitor as a mimic of the oxazolinium ion reaction intermediate than as a transition state analogue.  相似文献   

5.
The catalytic domain of chitobiase (beta-N-1-4 acetylhexosaminidase) from Serratia marcescens, is an alpha/beta TIM-barrel. This enzyme belongs to family 20 of glycosyl hydrolases in which a conserved amino acid pair, aspartate-glutamate, is present (Asp539-Glu540). It was proposed that catalysis by this enzyme family is carried out by glutamate 540 acting as a proton donor and by the acetamido group of the substrate as a nucleophile. We investigated the role of Asp539 and Glu540 by site-directed mutagenesis, biochemical characterization and by structural analyses of chitobiase -substrate co-crystals. We found that both residues are essential for chitobiase activity. The mutations, however, led to subtle changes in the catalytic site. Our results support the model that Glu540 acts as the proton donor and that Asp539 acts in several different ways. Asp539 restrains the acetamido group of the substrate in a specific orientation by forming a hydrogen bond with N2 of the non-reduced (-1) sugar. In addition, this residue participates in substrate binding. It is also required for the correct positioning of Glu540 and may provide additional negative charge at the active site. Thus, these biochemical and structural studies provide a molecular explanation for the functional importance and conservation of these residues.  相似文献   

6.
Chitinase A (ChiA) from the bacterium Serratia marcescens is a hydrolytic enzyme, which cleaves beta-1,4-glycosidic bonds of the natural biopolymer chitin to generate di-N-acetyl-chitobiose. The refined structure of ChiA at 1.55 A shows that residue Asp313, which is located near the catalytic proton donor residue Glu315, is found in two alternative conformations of equal occupancy. In addition, the structures of the cocrystallized mutant proteins D313A, E315Q, Y390F, and D391A with octa- or hexa-N-acetyl-glucosamine have been refined at high resolution and the interactions with the substrate have been characterized. The obtained results clearly show that the active site is a semiclosed tunnel. Upon binding, the enzyme bends and rotates the substrate in the vicinity of the scissile bond. Furthermore, the enzyme imposes a critical "chair" to "boat" conformational change on the sugar residue bound to the -1 subsite. According to our results, we suggest that residues Asp313 and Tyr390 along with Glu315 play a central role in the catalysis. We propose that after the protonation of the substrate glycosidic bond, Asp313 that interacts with Asp311 flips to its alternative position where it interacts with Glu315 thus forcing the substrate acetamido group of -1 sugar to rotate around the C2-N2 bond. As a result of these structural changes, the water molecule that is hydrogen-bonded to Tyr390 and the NH of the acetamido group is displaced to a position that allows the completion of hydrolysis. The presented results suggest a mechanism for ChiA that modifies the earlier proposed "substrate assisted" catalysis.  相似文献   

7.
Leptospira interrogans is the causative agent for leptospirosis, a zoonotic disease of global importance. In contrast with most other micro-organisms, L. interrogans employs a pyruvate pathway to synthesize isoleucine and LiCMS (L. interrogans citramalate synthase) catalyses the first reaction of the pathway which converts pyruvate and acetyl-CoA into citramalate, thus making it an attractive target for the development of antibacterial agents. We report here the crystal structures of the catalytic domain of LiCMS and its complexes with substrates, and kinetic and mutagenesis studies of LiCMS, which together reveal the molecular basis of the high substrate specificity and the catalytic mechanism of LiCMS. The catalytic domain consists of a TIM barrel flanked by an extended C-terminal region. It forms a homodimer in the crystal structure, and the active site is located at the centre of the TIM barrel near the C-terminal ends of the beta-strands and is composed of conserved residues of the beta-strands of one subunit and the C-terminal region of the other. The substrate specificity of LiCMS towards pyruvate against other alpha-oxo acids is dictated primarily by residues Leu(81), Leu(104) and Tyr(144), which form a hydrophobic pocket to accommodate the C(2)-methyl group of pyruvate. The catalysis follows the typical aldol condensation reaction, in which Glu(146) functions as a catalytic base to activate the methyl group of acetyl-CoA to form an enolated acetyl-CoA intermediate and Arg(16) as a general acid to stabilize the intermediate.  相似文献   

8.
The Cdc14 family of protein phosphatases is conserved within eukaryotes and antagonizes the action of cyclin-dependent kinases, thereby promoting mitotic exit and cytokinesis. We performed a detailed kinetic and mechanistic study of the Cdc14 phosphatases with both small molecule aryl phosphates and a physiological protein substrate hCdh1. We found that Cdc14 displays a strong preference for two-ringed aryl phosphates over smaller one-ringed or larger, multi-ringed substrates, a finding that may have important implications for inhibitor design. Results from both leaving group and pH dependence of the Cdc14-catalyzed reaction are consistent with a general acid-independent mechanism for substrates with leaving group pKa < 7 and a general acid-dependent mechanism for substrates with leaving group pKa > 7. The use of both low and high leaving group pKa substrates, in combination with steady-state and pre-steady-state kinetic techniques enabled the isolation and analysis of both the phosphoenzyme (E-P) formation and hydrolysis step. We established the requirement of general acid catalysis for E-P formation in reactions with high leaving group pKa substrates, and the presence of general base catalysis in E-P hydrolysis. Mutational study of invariant acidic residues in Cdc14 identified Asp253 as the general acid during E-P formation and the general base in E-P hydrolysis. We also identified several residues including Asp50, Asp129, Glu168, Glu171, and Asp177 in the Cdc14 active site cleft that are required for efficient dephosphorylation of hCdh1.  相似文献   

9.
The prokaryotic 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes the irreversible cleavage of the glycosidic bond in 5′-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH), a process that plays a key role in several metabolic pathways. Its absence in all mammalian species has implicated this enzyme as a promising target for antimicrobial drug design. Here, we report the crystal structure of BmMTAN in complex with its product adenine at a resolution of 2.6 Å determined by single-wavelength anomalous dispersion method. 11 key residues were mutated for kinetic characterization. Mutations of Tyr134 and Met144 resulted in the largest overall increase in Km, whereas mutagenesis of residues Glu18, Glu145 and Asp168 completely abolished activity. Glu145 and Asp168 were identified as active site residues essential for catalysis. The catalytic mechanism and implications of this structure for broad-based antibiotic design are discussed.  相似文献   

10.
Functionally important carboxyl groups in glucoamylase G2 from Aspergillus niger were identified using a differential labelling approach which involved modification of the acarbose-inhibited enzyme with 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)carbodiimide (EAC) and inactivation by [3H]EAC following removal of acarbose. Subsequent sequence localization of the substituted acidic residues was facilitated by specific phenylthiohydantoins. The acid cluster Asp176, Glu179 and Glu180 reacted exclusively with [3H]EAC, while Asp112, Asp153, Glu259 and Glu389 had incorporated both [3H]EAC and EAC. It is conceivable that one or two of the [3H]EAC-labelled side chains act in catalysis while the other fully protected residue(s) participates in substrate binding probably together with the partially protected ones. Twelve carboxyl groups that reacted with EAC in the enzyme-acarbose complex were also identified. Asp176, Glu179 and Glu180 are all invariant in fungal glucoamylases. Glu180 was tentatively identified as a catalytic group on the basis of sequence alignments to catalytic regions in isomaltase and alpha-amylase. The partially radiolabelled Asp112 corresponds in Taka-amylase A to Tyr75 situated in a substrate binding loop at a distance from the site of cleavage. A possible correlation between carbodiimide modification of an essential carboxyl group and its role in the glucoamylase catalysis is discussed.  相似文献   

11.
Trp108 of chicken lysozyme is in van der Waals contact with Glu35, one of two catalytic carboxyl groups. The role of Trp108 in lysozyme function and stability was investigated by using mutant lysozymes secreted from yeast. By the replacement of Trp108 with less hydrophobic residues, Tyr (W108Y lysozyme) and Gln (W108Q lysozyme), the activity, saccharide binding ability, stability, and pKa of Glu35 were all decreased with a decrease in the hydrophobicity of residue 108. Namely, at pH 5.5 and 40 degrees C, the activities of W108Y and W108Q lysozymes against glycol chitin were 17.3 and 1.6% of that of wild-type lysozyme, and their dissociation constants for the binding of a trimer of N-acetyl-D-glucosamine were 7.4 and 309 times larger than that of wild-type lysozyme, respectively. For the reversible unfolding at pH 3.5 and 30 degrees C, W108Y and W108Q lysozymes were less stable than wild-type lysozyme by 1.4 and 3.6 kcal/mol, respectively. As for the pKa of Glu35, the values for W108Y and W108Q lysozymes were found to be lower than that for wild-type lysozyme by 0.2 and by 0.6 pKa unit, respectively. The pKa of Glu35 in lysozyme was also decreased from 6.1 to 5.4 by the presence of 1-3 M guanidine hydrochloride, or to 5.5 by the substitution of Asn for Asp52, another catalytic carboxyl group. Thus, both the hydrophobicity of Trp108 and the electrostatic interaction with Asp52 are equally responsible for the abnormally high pKa (6.1) of Glu35, compared with that (4.4) of a normal glutamic acid residue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The role of conserved amino acid residues in the polymerase domain of Escherichia coli primase has been studied by mutagenesis. We demonstrate that each of the conserved amino acids Arg146, Arg221, Tyr230, Gly266, and Asp311 is involved in the process of catalysis. Residues Glu265 and Asp309 are also critical because a substitution of each amino acid irreversibly destroys the catalytic activity. Two K229A and M268A mutant primase proteins synthesize only 2-nucleotide products in de novo synthesis reactions under standard conditions. Y267A mutant primase protein synthesizes both full-size and 2-nucleotide RNA, but with no intermediate-size products. From these data we discuss the significant step of the 2-nucleotide primer RNA synthesis by E. coli primase and the role of amino acids Lys229, Tyr267, and Met268 in primase complex stability.  相似文献   

13.
The contributions to catalysis of the conserved catalytic aspartate (Asp149) in the phosphorylase kinase catalytic subunit (PhK; residues 1-298) have been studied by kinetic and crystallographic methods. Kinetic studies in solvents of different viscosity show that PhK, like cyclic AMP dependent protein kinase, exhibits a mechanism in which the chemical step of phosphoryl transfer is fast and the rate-limiting step is release of the products, ADP and phosphoprotein, and possibly viscosity-dependent conformational changes. Site-directed mutagenesis of Asp149 to Ala and Asn resulted in enzymes with a small increase in K(m) for glycogen phosphorylase b (GPb) and ATP substrates and dramatic decreases in k(cat) (1.3 x 10(4) for Asp149Ala and 4.7 x 10(3) for Asp149Asn mutants, respectively). Viscosometric kinetic measurements with the Asp149Asn mutant showed a reduction in the rate-limiting step for release of products by 4.5 x 10(3) and a significant decrease (possibly as great as 2.2 x 10(3)) in the rate constant characterizing the chemical step. The date combined with the crystallographic evidence for the ternary PhK-AMPPNP-peptide complex [Lowe et al. (1997) EMBO J. 6, 6646-6658] provide powerful support for the role of the carboxyl of Asp149 in binding and orientation of the substrate and in catalysis of phosphoryl transfer. The constitutively active subunit PhK has a glutamate (Glu182) residue in the activation segment, in place of a phosphorylatable serine, threonine, or tyrosine residue in other protein kinases that are activated by phosphorylation. Site-directed mutagenesis of Glu182 and other residues involved in a hydrogen bond network resulted in mutant proteins (Glu182Ser, Arg148Ala, and Tyr206Phe) with decreased catalytic efficiency (approximate average decrease in k(cat)/K(m) by 20-fold). The crystal structure of the mutant Glu182Ser at 2.6 A resolution showed a phosphate dianion about 2.6 A from the position previously occupied by the carboxylate of Glu182. There was no change in tertiary structure from the native protein, but the activation segment in the region C-terminal to residue 182 showed increased disorder, indicating that correct localization of the activation segment is necessary in order to recognize and present the protein substrate for catalysis.  相似文献   

14.
Asp142 in the homotetrameric ADP-glucose pyrophosphorylase (ADP-Glc PPase) enzyme from Escherichia coli was demonstrated to be involved in catalysis of this enzyme [Frueauf, J.B., Ballicora, M.A. and Preiss J. (2001) J. Biol. Chem., 276, 46319-46325]. The residue is highly conserved throughout the family of ADP-Glc PPases, as well as throughout the super-family of sugar-nucleotide pyrophosphorylases. In the heterotetrameric ADP-Glc PPase from potato (Solanum tuberosum L.) tuber, the homologous residue is present in both the small (Asp145) and the large (Asp160) subunits. It has been proposed that the small subunit of plant ADP-Glc PPases is catalytic, while the large subunit is modulatory; however, no catalytic residues have been identified. To investigate the function of these conserved Asp residues in the ADP-Glc PPase from potato tuber, we used site-directed mutagenesis to introduce either an Asn or a Glu. Kinetic analysis in the direction of synthesis or pyrophosphorolysis of ADP-Glc showed a significant decrease (more than four orders of magnitude) in the specific activity of the SD145NLwt, SD145NLD160N, and SD145NLD160E mutants, while the effect was smaller (approximately two orders of magnitude) with the SD145ELwt, SD145ELD160N, and SD145ELD160E mutants. By contrast, mutation of the large subunit alone did not affect the specific activity but did alter the apparent affinity for the activator 3-phosphoglycerate, showing two types of apparent roles for this residue in the different subunits. These results show that mutation of Asp160 of the large subunit does not affect catalysis, thus the large subunit is not catalytic, and that the negative charge of Asp145 in the small subunit is necessary for enzyme catalysis.  相似文献   

15.
Family 18 chitinases have the signature peptide DGXDXDXE forming the fourth beta-strand in the (beta/alpha)8-barrel of their catalytic domain. The carboxyl-end glutamic acid, E315 in Serratia marcescens chitinase A, serves as the acid/base during chitin hydrolysis, and the side-chain of the preceding aspartic acid, D313, helps to position correctly the N-acetyl moiety of the glycosyl sugar undergoing hydrolysis. Chitin substrates are bound within a long cleft across the top of the barrel, whose floor consists of aromatic residues that hydrophobically stack with every other GlcNAc. Alanine substitution of the conserved Trp167 at the -3 subsite in Serratia marcescens chitinase A enhanced transglycosylation. Higher oligosaccharides were formed from both chitin tetra- and pentasaccharide, and the only hydrolytic product from chitin trisaccharide was the disaccharide. Greater retention of the glycosyl fragment at the active site of the -3 mutant of Serratia marcescens chitinase A might favor transglycosylation due to a stabilized conformation of its D313.  相似文献   

16.
Chitinase is an enzyme used by insects to degrade the structural polysaccharide, chitin, during the molting process. Tryptophan 145 (W145) of Manduca sexta (tobacco hornworm) chitinase is a highly conserved residue found within a second conserved region of family 18 chitinases. It is located between aspartate 144 (D144) and glutamate 146 (E146), which are putative catalytic residues. The role of the active site residue, W145, in M. sexta chitinase catalysis was investigated by site-directed mutagenesis. W145 was mutated to phenylalanine (F), tyrosine (Y), isoleucine (I), histidine (H), and glycine (G). Wild-type and mutant forms of M. sexta chitinases were expressed in a baculovirus-insect cell line system. The chitinases secreted into the medium were purified and characterized by analyzing their catalytic activity and substrate or inhibitor binding properties. The wild-type chitinase was most active in the alkaline pH range. Several of the mutations resulted in a narrowing of the range of pH over which the enzyme hydrolyzed the polymeric substrate, CM-Chitin-RBV, predominantly on the alkaline side of the pH optimum curve. The range was reduced by about 1 pH unit for W145I and W145Y and by about 2 units for W145H and W145F. The W145G mutation was inactive. Therefore, the hydrophobicity of W145 appears to be critical for maintaining an abnormal pKa of a catalytic residue, which extends the activity further into the alkaline range. All of the mutant enzymes bound to chitin, suggesting that W145 was not essential for binding to chitin. However, the small difference in Km's of mutated enzymes compared to Km values of the wild-type chitinase towards both the oligomeric and polymeric substrates suggested that W145 is not essential for substrate binding but probably influences the ionization of a catalytically important group(s). The variations in kcat's among the mutated enzymes and the IC50 for the transition state inhibitor analog, allosamidin, indicate that W145 also influences formation of the transition state during catalysis.  相似文献   

17.
QCs (glutaminyl cyclases; glutaminyl-peptide cyclotransferases, EC 2.3.2.5) catalyse N-terminal pyroglutamate formation in numerous bioactive peptides and proteins. The enzymes were reported to be involved in several pathological conditions such as amyloidotic disease, osteoporosis, rheumatoid arthritis and melanoma. The crystal structure of human QC revealed an unusual H-bond (hydrogen-bond) network in the active site, formed by several highly conserved residues (Ser(160), Glu(201), Asp(248), Asp(305) and His(319)), within which Glu(201) and Asp(248) were found to bind to substrate. In the present study we combined steady-state enzyme kinetic and X-ray structural analyses of 11 single-mutation human QCs to investigate the roles of the H-bond network in catalysis. Our results showed that disrupting one or both of the central H-bonds, i.e., Glu(201)...Asp(305) and Asp(248)...Asp(305), reduced the steady-state catalysis dramatically. The roles of these two COOH...COOH bonds on catalysis could be partly replaced by COOH...water bonds, but not by COOH...CONH(2) bonds, reminiscent of the low-barrier Asp...Asp H-bond in the active site of pepsin-like aspartic peptidases. Mutations on Asp(305), a residue located at the centre of the H-bond network, raised the K(m) value of the enzyme by 4.4-19-fold, but decreased the k(cat) value by 79-2842-fold, indicating that Asp(305) primarily plays a catalytic role. In addition, results from mutational studies on Ser(160) and His(319) suggest that these two residues might help to stabilize the conformations of Asp(248) and Asp(305) respectively. These data allow us to propose an essential proton transfer between Glu(201), Asp(305) and Asp(248) during the catalysis by animal QCs.  相似文献   

18.
Bioactive peptides frequently terminate with an essential alpha-amide that is generated from a COOH-terminal Gly in a two-step enzymatic process occurring within the lumen of the secretory pathway. The first enzyme, peptidylglycine alpha-hydroxylating monooxygenase, is a member of the copper- and ascorbate-dependent monooxygenase family. The second enzyme, peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL, EC 4.3.2.5), has no known homologues. Examination of the catalytic core of PAL (PALcc) using trypsin, BNPS skatole, and COOH-terminally truncated proteins failed to identify stable subdomains. Treatment of PALcc with divalent metal ion chelators inactivated the enzyme and increased its protease and thermal sensitivity, suggesting a structural role for bound metal. Purified PALcc contained 0.7 +/- 0.4 mol of zinc/mol of enzyme. Since the four Cys residues in PALcc form two disulfide bonds, potential Zn ligands include conserved Asp, Glu, and His residues. The secretion and activity of PALcc bearing mutations in each conserved Asp, Glu, and His residue were evaluated. Mutation of three conserved Asp residues and two conserved His residues yielded a protein that could not be secreted, suggesting that these residues play a structural role. Analysis of mutants that were efficiently secreted identified three His residues along with single Asp residue that may play a role in catalysis. These essential residues occur in a pattern unique to PAL.  相似文献   

19.
A class V (glycoside hydrolase family 18) chitinase from the cycad Cycas revoluta (CrChiA) is a plant chitinase that has been reported to possess efficient transglycosylation (TG) activity. We solved the crystal structure of CrChiA, and compared it with those of class V chitinases from Nicotiana tabacum (NtChiV) and Arabidopsis thaliana (AtChiC), which do not efficiently catalyze the TG reaction. All three chitinases had a similar (α/β)8 barrel fold with an (α + β) insertion domain. In the acceptor binding site (+1, +2 and +3) of CrChiA, the Trp168 side chain was found to stack face‐to‐face with the +3 sugar. However, this interaction was not found in the identical regions of NtChiV and AtChiC. In the DxDxE motif, which is essential for catalysis, the carboxyl group of the middle Asp (Asp117) was always oriented toward the catalytic acid Glu119 in CrChiA, whereas the corresponding Asp in NtChiV and AtChiC was oriented toward the first Asp. These structural features of CrChiA appear to be responsible for the efficient TG activity. When binding of the inhibitor allosamidin was evaluated using isothermal titration calorimetry, the changes in binding free energy of the three chitinases were found to be similar to each other, i.e. between ?9.5 and ?9.8 kcal mol?1. However, solvation and conformational entropy changes in CrChiA were markedly different from those in NtChiV and AtChiC, but similar to those of chitinase A from Serratia marcescens (SmChiA), which also exhibits significant TG activity. These results provide insight into the molecular mechanism underlying the TG reaction and the molecular evolution from bacterial chitinases to plant class V chitinases.  相似文献   

20.
The detailed binding mechanism of wheat germ agglutinin (WGA) with N-acetylglucosamine (GlcNAc) was investigated using intermolecular 1H-1H nuclear Overhauser effect (NOE) and atomic pair potential (APP) calculations. Negative NOE was observed on the 1H spectrum of 1-O-methyl derivative of GlcNAc in a solution containing WGA, when the aromatic region of the WGA spectrum was irradiated. Analyses of the time dependence of NOE revealed that H2 and the N-acetyl methyl protons of the sugar are in close proximity to the aromatic protons of WGA in the bound state. This was confirmed and further elucidated by the APP calculations. According to the calculation, the major binding force comes from a hydrogen-bonding between C3-OH of sugar and an acidic residue present in each of the two binding sites of WGA: Glu115 in site 1 and Asp29 in site 2. The binding is further assisted by the N-acetyl group which interacts with a few more polar amino acid residues in the binding sites. The optimized binding mode suggested by the APP calculations supports the NMR results in that H2 and a part of the N-acetyl methyl protons are within 4.5 A distance from protons of both Tyr64 and Tyr73 in site 1 and of Tyr159 in site 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号