首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R R Russell 《Microbios》1978,23(93-94):136-146
The glycosyltransferases of S. mutans strain Ingbritt have been resolved by SDS-polyacrylamide gel electrophoresis, followed by incubation in the presence of non-ionic detergent to restore enzyme activity. A group of high molecular weight proteins synthesizing glucans has been identified, as well as three distinct fructan-synthesizing activities. The glucan-forming enzymes have been purified by affinity chromatography on insoluble glucan, followed by gel chromatography in SDS, and antiserum to the purified enzymes has shown that they are antigenically identical within serotypes c, e and f, and cross-react strongly with serotype b.  相似文献   

2.
Aminoalkyl affinity matrices.   总被引:1,自引:0,他引:1  
Aminoalkyl matrices are used in affinity chromatography of amine oxidases and other proteins with affinity for amino groups. Under appropriate circumstances chromatography on aminoalkyl matrices may yield purification factors around 100 to 1000, and they have been used in affinity purification of many members of the amine oxidase family. Other proteins with affinity for aminoalkyl matrices include thiol ester proteins, lactoferrin, and proteins with lysine-binding kringles (plasminogen, plasminogen activator, apolipoprotein A). The affinity of thiol ester proteins for aminoalkyl matrices is abolished after inactivation of the thiol ester group by reaction with low molecular weight amines including ammonia. Due to this, an ammonium sulphate precipitation step should be included in purification schemes for amine oxidases. The affinity of lactoferrin for aminoalkyl matrices stems from an affinity for the repeating amino groups in glycosaminoglycans, and this explains why lactoferrin requires diamines for efficient elution. The affinity of plasminogen for aminoalkyl groups is exploited in a one-step purification from plasma, and is also utilised in purification schemes for angiostatin, an angiogenesis-inhibiting fragment of plasminogen. Apolipoprotein A is homologous to plasminogen, and also has affinity for aminohexyl columns. The common binding motif for these proteins are lysine-binding kringles. Due to the properties of the amino group itself, aminoalkyl matrices will inevitably also function as anion exchangers, and this must be taken into consideration in the choice of conditions for sample loading, column washing and elution of bound proteins. Depending on the length of the alkyl chain, the matrices also have a potential for hydrophobic interactions. This property has been exploited in the purification of several proteins but must be minimized during affinity chromatography of amine oxidases. In conclusion, aminoalkyl matrices are valuable tools for affinity chromatography of several different proteins, and simple variations of sample pretreatment, sample loading, and column washing and elution conditions allow efficient selective purification of proteins with different affinities for the matrices.  相似文献   

3.
4.
Methods for preparative high-performance liquid chromatography (hplc) of proteins are described. Both normal and reverse-phase chromatography were studied and adapted to the fractionation of proteins in quantities of up to 50 mg. Lichrosorb Diol was used as a “normal phase” for chromatography of hydrophobic proteins. Lichrosorb RP-8 was used for reversephase chromatography of proteins.  相似文献   

5.
Transcobalamin I and transcobalamin III have been purified approximately 6,000,000- and 3,000,000-fold, respectively, from normal human plasma using a purification scheme consisting of immunoadsorption, dialysis against 7.5 M guanidine HCl to remove endogenous vitamin B12, and affinity chromatography on vitamin B12-Sepharose. The two proteins were separated from each other subsequently by chromatography on DEAE-cellulose. The vitamin B12-binding protein present in granulocytes obtained from normal subjects has been purified approximately 5000-fold using affinity chromatography on vitamin B12-Sepharose as the sole purification technique. The final preparations of all three proteins were homogeneous based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Transcobalamin I and transcobalamin III belong to the R-typed class of vitamin B12-binding proteins and are indistinguishable from each other, and from the human granulocyte, milk, and saliva R-type vitamin B12-binding proteins, when studied by immunodiffusion with rabbit anti-human milk vitamin B12-binding protein sera. The carbohydrate compositions, expressed as moles of carbohydrate per mole of vitamin B12, of transcobalamin I, transcobalamin III, and the normal granulocyte vitamin B12-binding protein, respectively, are: sialic acid, 18, 11, 11; fucose, 9, 20, 24; galactose, 41, 51, 46; mannose, 24, 22, 20; galactosamine, 2, 2, 2; and glucosamine, 46, 54, 46. The high sialic acid content of transcobalamin I appears to account for the fact that this protein elutes after transcobalamin III and the normal granulocyte vitamin B12-binding protein during chromatography on DEAE-cellulose. This observation provides support for the hypothesis that differences among the R-type vitamin B12-binding proteins are due to differences in carbohydrate content. The similarities in carbohydrate composition and other properties of transcobalamin III and the granulocyte vitamin B12-binding protein provide support for the hypothesis that human plasma transcobalamin III is derived from granulocytes. The differences observed between transcobalamin I and the normal granulocyte vitamin B12-binding protein suggest that transcobalamin I may not be derived from granulocytes.  相似文献   

6.
Affinity chromatography is a powerful technique for the purification of many proteins in human plasma. Applications cover the isolation of proteins for research purposes but also, to a large extent, for the production of therapeutic products. In industrial plasma fractionation, affinity chromatography has been found to be particularly advantageous for fine and rapid capture of plasma proteins from industrial plasma fractions pre-purified by ethanol fractionation or by ion-exchange chromatography. To date, affinity chromatography is being used in the production of various licensed therapeutic plasma products, such as the concentrates of Factor VIII, Factor IX, von Willebrand Factor, Protein C, Antithrombin III, and Factor XI. Most commonly used ligands are heparin, gelatin, murine antibodies, and, to a lesser extent, Cu(2+). Possible development of the use of affinity chromatography in industrial plasma fractionation should be associated to the current development of phage display and combinatorial chemistry. Both approaches may lead to the development of tailor-made synthetic ligands that would allow implementation of protein capture technology, providing improved productivity and yield for plasma products.  相似文献   

7.
Various S-substituted derivatives of the reduced low sulphur and high proteins from wool have been prepared in which the substituted group is hydrogen, carboxymethyl, carboxethyl, methyl, carbamidomethyl, cyanoethyl and aminoethyl. The proton magnetic resonance (PMR) spectra and gel filtration chromatography of these proteins have been examined in 8 M urea solution as a function of pH in order to determine conditions under which the proteins occur as random coils in solution with no evidence for the occurrence of non-covalent interactions. The PMR method described in an earlier paper (1) provides an easier and much more sensitive method for the observation of non-covalent interactions in random coil proteins than does the measurement of elution volumes in gel chromatography. The results obtained by both methods are consistent and show that the widest range of pH for which unfolding occurs in 8 M urea is obtained with the S-carboxymethyl, S-carboxyethyl, S-methyl and S-carbamidomethyl derivatives.  相似文献   

8.
Ion-exchange derivatives are described. of a hydrophilic rigid macroporous glycolmethacrylate gel called Spheron, suitable for rapid high-performance liquid chromatography (HPLC) of proteins and their fragments. Their flow parameters are compared with those of ion exchange derivatives of cellulose and polydextran. The conditions for work with them are described (regeneration, cycling, equilibration, column packing) as well as the construction of a simple apparatus for medium-pressure ion exchange chromatography of proteins. The efficiency of these ion exchangers for the separation of proteins is illustrated with examples of chromatography of an artificial mixture of serum albumin, chymotrypsinogen and lysozyme. Chromatography of cyanogen bromide fragments of serum albumin and the A and B chains of oxidized insulin showed that the method can be applied in chromatography on higher molecular protein fragments. A review of all proteins, including technical enzymes, which have already been chromatographed on Spheron ion exchangers is also given. The prospects of Spheron ion exchangers for HPLC of proteins and their fragments are briefly discussed.  相似文献   

9.
Four DNA binding histone-like proteins have been purified from the nucleoid of the acidothermophilic archaebacterium Sulfolobus acidocaldarius to homogeneity employing DNA-cellulose chromatography and carboxymethylcellulose chromatography. The molecular weights of these proteins are in the range 8,000-12,500. Immunoblotting results suggest that a few antigenic determinants are common among these proteins which could not be detected by immunodiffusion. Spectroscopic properties of the proteins have been studied. The amino acid compositions of these proteins show both similarities and differences with histones and prokaryotic histone-like proteins. All of the four proteins bind native and denatured DNAs and single stranded RNA with differing affinities. Three of the proteins, denoted by HSNP (helix stabilizing nucleoid protein)-A, HSNP-C, and HSNP-C', show physiologically significant, strong, and synergistic effects in stabilizing duplex DNA against thermal denaturation with Tm increases in the range of 15-30 +/- degrees C.  相似文献   

10.
Affinity chromatography has been extensively refined over the past few years to meet the more stringent criteria being placed on recombinant proteins as therapeutic products. New developments in the design of selective and stable ligands for affinity chromatography are establishing the technique as a routine tool in process-scale protein purification. Exploitation of sophisticated molecular modelling techniques in conjunction with binding and crystallographic studies has permitted the design of new, highly selective 'biomimetic' ligands for the target proteins.  相似文献   

11.
Bacteriocins have been isolated both as simple proteins and as proteins in association with carbohydrates, lipids, etc. Colicins are commonly inducible and extracellular. Their molecular masses range from 30 to 90 kDa. Pure colicin S8 was obtained in three steps from supernatant of induced cells: (i) Ammonium sulfate precipitation; (ii) anion exchange chromatography; and (iii) phenyl-Sepharose hydrophobic chromatography, either by preparative or fast performance liquid chromatography (FPLC) analytical purification procedure. In our hands, purified colicin S8 was an aggregation of extremely related polypeptides. Composition of those active fractions was the same: five polypeptides of molecular weight around 55 kDa. Behavior on molecular filtration indicated a molecular weight higher than 200 kDa. Similar results were obtained when purification was carried out through FPLC. Producing strains contain a single plasmid that encodes colicin S8; in minicells, this plasmid was shown to specify a 60 kDa polypeptide. We conclude that more than one form of colicin S8 exists. The forms are structurally related and can be recognized by antibodies raised against one of the polypeptides. Consistent with this conclusion, comparison of peptides produced after hydrolysis with chlorosuccinamide indicated that the active proteins contained both shared and unique components.  相似文献   

12.
Dye-ligand affinity systems.   总被引:5,自引:0,他引:5  
Dye-ligands have been considered as one of the important alternatives to natural counterparts for specific affinity chromatography. Dye-ligands are able to bind most types of proteins, in some cases in a remarkably specific manner. They are commercially available, inexpensive, and can easily be immobilized, especially on matrices bearing hydroxyl groups. Although dyes are all synthetic in nature, they are still classified as affinity ligands because they interact with the active sites of many proteins mimicking the structure of the substrates, cofactors, or binding agents for those proteins. A number of textile dyes, known as reactive dyes, have been used for protein purification. Most of these reactive dyes consist of a chromophore (either azo dyes, anthraquinone, or phathalocyanine), linked to a reactive group (often a mono- or dichlorotriazine ring). The interaction between the dye ligand and proteins can be by complex combination of electrostatic, hydrophobic, hydrogen bonding. Selection of the supporting matrix is the first important consideration in dye-affinity systems. There are several methods for immobilization of dye molecules onto the support matrix, in which usually several intermediate steps are followed. Both the adsorption and elution steps should carefully be optimized/designed for a successful separation. Dye-affinity systems in the form of spherical sorbents or as affinity membranes have been used in protein separation.  相似文献   

13.
14.
Homogeneous preparations of ferredoxin, plastocyanin, and chloroplast coupling factor (CF1) have been isolated from spinach by a combined procedure in which supernatants from preparation of chloroplasts are used for isolation of ferredoxin and the chloroplasts serve as the source of plastocyanin. The proteins were purified by DEAE-cellulose chromatography and gel filtration, after precipitation with acetone in the case of ferredoxin or release from membranes in the case of plastocyanin. The proteins obtained by this procedure are pure, as evidenced by absorption ratios (ferredoxin, A420/A276 = 0.47-0.48; plastocyanin, A278/A597 = 1.2) and by the fact that both proteins migrate as single bands on polyacrylamide gels in the presence of sodium dodecyl sulfate.  相似文献   

15.
A deoxyribonucleoprotein (DNP) complex has been isolated from Escherichia coli cells by chromatography on Sephadex G-200. The DNP complex contains phosphoproteins and the content of phosphorus bound to the DNP protein is 3 times higher than in cytoplasmic proteins not bound to DNA. These results have been confirmed by in vivo (32-P-KH2PO4) and in vitro (32-P-ATP) phosphorylation of E. coli DNA-binding proteins isolated by chromatography on DNA--cellulose.  相似文献   

16.
In eukaryotes splicing of pre-mRNAs is mediated by the spliceosome, a dynamic complex of small nuclear ribonucleoprotein particles (snRNPs) that associate transiently during spliceosome assembly and the splicing reaction. We have purified snRNPs from nuclear extracts of Drosophila cells by affinity chromatography with an antibody specific for the trimethylguanosine (m3G) cap structure of snRNAs U1-U5. The polypeptide components of Drosophila snRNPs have been characterized and shown to consist of a number of proteins shared by all the snRNPs, and some proteins which appear to be specific to individual snRNP particles. On the basis of their apparent molecular weight and antigenicity many of these common and particle specific Drosophila snRNP proteins are remarkably conserved between Drosophila and human spliceosomes. By probing western blots of the Drosophila snRNP polypeptides with a number of antisera raised against human snRNP proteins, Drosophila polypeptides equivalent to many of the HeLa snRNP-common proteins have been identified, as well as candidates for a number of U1, U2 and U5-specific proteins.  相似文献   

17.
Two procedures for the purification of infectious lymphocytic choriomeningitis virus from cell culture fluid have been developed. If large quantities of very pure virus are to be prepared, infected L cells are maintained with a medium supplemented with calf serum, the proteins of which have been largely removed by pretreatment with polyethylene glycol. Two days after infection of the cultures, the media are collected and the virus is concentrated by treatment with polyethylene glycol 40,000. Purification with a 10,000-fold increase of specific infectivity is achieved with steric chromatography on controlled-pore glass beads with pore sizes of 42 to 44 nm and centrifugation in density gradients prepared with amido trizoate. An alternative method begins with precipitation of the virus from infected cell cuture medium with zinc acetate, followed by controlled-pore glass chromatography and density centrifugation in a discontinuous sucrose gradient. Purification thus obtained is 200-fold in terms of specific infectivity.  相似文献   

18.
Affinity-repulsion chromatography. Principle and application to lectins   总被引:3,自引:0,他引:3  
The interactions of proteins with their immobilized ligands in an electrically charged microenvironment were studied. The binding of lectins to erythrocytes and to affinity matrices was used as a model system. Lectins bind and agglutinate erythrocytes in the presence of at least 10 mM NaCl or 1 mM CaCl2, but not in deionized water. The salt dependence of the agglutination process is due to the ability of salts to provide counterions neutralizing the forces of repulsion between the electrostatic charges of similar sign present on the erythrocyte cell surface and on the lectins. The same salt dependence is observed for the binding of lectins to affinity matrices. These observations are the basis of a protein separation process coined affinity-repulsion chromatography in which the electrostatic charges present, or purposely introduced, on affinity matrices are exploited and allow the elution, by electrostatic repulsion, of proteins carrying electrostatic charges of the same sign as that of the matrix. In this process, proteins are loaded on the affinity matrix in a salt solution and eluted with deionized water. Affinity-repulsion chromatography has been successfully applied here to the isolation of several lectins. Its physicochemical basis, merits, and potential applications are discussed.  相似文献   

19.
J W Fristrom  R J Hill  F Watt 《Biochemistry》1978,17(19):3917-3930
Proteins, soluble in 7 M urea, 4 M guanidine hydrochloride, or 2% sodium dodecyl sulfate, have been extracted from untanned larval cuticles of Drosophila melanogaster. A major protein fraction, apparent molecular weight 8000 - 10 000, is resolved into eight different components (five major, three minor) by gradient gel electrophoresis under nondenaturing conditions. Proteins extracted in 7 M urea have been resolved by diethylaminoethylcellulose chromatography into five fractions, three of which are greatly enriched for electrophoretically homogeneous proteins. The five fractions have different amino acid compositions. Electrophoretic variants involving four of the five major proteins have been obtained. Preliminary genetic analysis indicates that at least three of the five proteins are specified by separate structural genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号