共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Insulin sensitivity is impaired in obesity, and insulin resistance is the primary risk factor for type 2 diabetes. Here we show that lipocalin-13 (LCN13), a lipocalin superfamily member, is a novel insulin sensitizer. LCN13 was secreted by multiple cell types. Circulating LCN13 was markedly reduced in mice with obesity and type 2 diabetes. Three distinct approaches were used to increase LCN13 levels: LCN13 transgenic mice, LCN13 adenoviral infection, and recombinant LCN13 administration. Restoration of LCN13 significantly ameliorated hyperglycemia, insulin resistance, and glucose intolerance in mice with obesity. LCN13 enhanced insulin signaling not only in animals but also in cultured adipocytes. Recombinant LCN13 increased the ability of insulin to stimulate glucose uptake in adipocytes and to suppress hepatic glucose production (HGP) in primary hepatocyte cultures. Additionally, LCN13 alone was able to suppress HGP, whereas neutralization of LCN13 increased HGP in primary hepatocyte cultures. These data suggest that LCN13 regulates glucose metabolism by both insulin-dependent and insulin-independent mechanisms. LCN13 and LCN13-related molecules may be used to treat insulin resistance and type 2 diabetes. 相似文献
7.
8.
9.
10.
11.
Gap junction (GJ) intercellular communication (GJIC) is vital to ensure proper cell and tissue function. GJ are multimeric structures composed of proteins called connexins. Modifications on stability or subcellular distribution of connexins have a direct impact on the extent of GJIC. In this study we have investigated the role of the proteasome in regulation of connexin 43 (Cx43) internalization. Although the participation of both the proteasome and lysosome has long been suggested in Cx43 degradation, the molecular mechanisms whereby proteasome contributes to regulate Cx43 internalization and intercellular communication are still unclear. The results presented in this study envision a new mechanism whereby proteasome regulates GJIC by modulating interaction between Cx43 and ZO-1. Immunoprecipitation experiments, in the presence of proteasome inhibitors, together with immunofluorescence data indicate that the proteasome regulates interaction between Cx43 and ZO-1. Overexpression of the PDZ2 domain of ZO-1 and the expression of Cx-43 fused in frame with a V5/HIS tag, suggest that interaction between the two proteins occurs through the PDZ2 domain of ZO-1 and the C-terminus of Cx43. When interaction between Cx43 and ZO-1 is reduced, as in the presence of proteasome inhibitors, Cx43 accumulates, forming large GJ plaques at plasma membrane. Data presented in this article suggest a new pathway whereby alterations in proteasome activity may impact on GJIC as well as on non-junctional communication with extracellular environment, contributing to cell and tissue dysfunction. 相似文献
12.
Gordón-Alonso M Rocha-Perugini V Álvarez S Moreno-Gonzalo O Ursa A López-Martín S Izquierdo-Useros N Martínez-Picado J Muñoz-Fernández MÁ Yáñez-Mó M Sánchez-Madrid F 《Molecular biology of the cell》2012,23(12):2253-2263
Syntenin-1 is a cytosolic adaptor protein involved in several cellular processes requiring polarization. Human immunodeficiency virus type 1 (HIV-1) attachment to target CD4(+) T-cells induces polarization of the viral receptor and coreceptor, CD4/CXCR4, and cellular structures toward the virus contact area, and triggers local actin polymerization and phosphatidylinositol 4,5-bisphosphate (PIP(2)) production, which are needed for successful HIV infection. We show that syntenin-1 is recruited to the plasma membrane during HIV-1 attachment and associates with CD4, the main HIV-1 receptor. Syntenin-1 overexpression inhibits HIV-1 production and HIV-mediated cell fusion, while syntenin depletion specifically increases HIV-1 entry. Down-regulation of syntenin-1 expression reduces F-actin polymerization in response to HIV-1. Moreover, HIV-induced PIP(2) accumulation is increased in syntenin-1-depleted cells. Once the virus has entered the target cell, syntenin-1 polarization toward the viral nucleocapsid is lost, suggesting a spatiotemporal regulatory role of syntenin-1 in actin remodeling, PIP(2) production, and the dynamics of HIV-1 entry. 相似文献
13.
Copper is an essential metal which is used as a cofactor in several enzymes and is required for numerous essential biochemical reactions. However, free copper ions can be toxic to cellular systems if the intracellular concentration is not tightly regulated. In this study we show that Staphylococcus aureus copper resistance is not the same in every staphylococcal isolate, but in fact varies considerably between clinical strains. Hyper-copper-resistance was shown to be due to the carriage of an additional plasmid-encoded copper homeostasis mechanism, copBmco. This plasmid can be transferred into the copper-sensitive S. aureus Newman to confer a hyper-copper-resistant phenotype, showing that copper resistance has the potential to spread to other S. aureus strains. This is the first time that plasmid-encoded copper resistance has been reported and shown to be transferable between pathogenic bacteria isolated from humans. A homologue of the Bacillus subtilis and Mycobacterium tuberculosis CsoR regulators was identified in S. aureus. The S. aureus csoR gene is conserved in all sequenced S. aureus genomes and was found to be copper-induced and transcribed along with two downstream genes: a putative copper chaperone (csoZ) and a hypothetical gene. Mutational and complementation studies showed that unlike other homologues, the S. aureus CsoR negatively regulates both chromosomal and plasmid-encoded copper homeostasis mechanisms in response to excess-copper conditions. 相似文献
14.
15.
Constable JR Graham ME Morgan A Burgoyne RD 《The Journal of biological chemistry》2005,280(36):31615-31623
Amisyn and tomosyn are related by the possession of a C-terminal vesicle-associated membrane protein-like domain that allows them to bind to syntaxin 1 and assemble into SNARE complexes. The formation of inactive complexes may sequester syntaxin and allow tomosyn and amisyn to act as inhibitors of exocytosis. We aimed to use adrenal chromaffin and PC12 cells to probe this possible mode of action of amisyn and tomosyn in dense core granule exocytosis. Although tomosyn is expressed by adrenal chromaffin and PC12 cells, amisyn expression could not be detected allowing examination of the effect of introduction of amisyn expression onto a neuronal-like background. Overexpression of m-tomosyn1 and expression of amisyn both inhibited Ca2+-induced exocytosis in transfected PC12 cells. Surprisingly, this inhibition was not removed when amisyn and tomosyn constructs were used in which key residues required for efficient binding to syntaxin1 were mutated. The effect of amisyn was further characterized using carbon fiber amperometry in chromaffin cells. Expression of amisyn had no effect on the basic characteristics of the amperometric spikes but reduced the number of spikes elicited. This inhibitory action on the extent of exocytosis was also seen with the amisyn mutant deficient in syntaxin1 binding. In addition, expression of amisyn resulted in an increase in the lifetime of the prespike foot, and this effect was abolished by the mutations. These results show that tomosyn and amisyn can negatively regulate exocytosis independently of syntaxin and also that amisyn can regulate the stability of the fusion pore. 相似文献
16.
Jin SM Lazarou M Wang C Kane LA Narendra DP Youle RJ 《The Journal of cell biology》2010,191(5):933-942
PINK1 is a mitochondrial kinase mutated in some familial cases of Parkinson's disease. It has been found to work in the same pathway as the E3 ligase Parkin in the maintenance of flight muscles and dopaminergic neurons in Drosophila melanogaster and to recruit cytosolic Parkin to mitochondria to mediate mitophagy in mammalian cells. Although PINK1 has a predicted mitochondrial import sequence, its cellular and submitochondrial localization remains unclear in part because it is rapidly degraded. In this study, we report that the mitochondrial inner membrane rhomboid protease presenilin-associated rhomboid-like protein (PARL) mediates cleavage of PINK1 dependent on mitochondrial membrane potential. In the absence of PARL, the constitutive degradation of PINK1 is inhibited, stabilizing a 60-kD form inside mitochondria. When mitochondrial membrane potential is dissipated, PINK1 accumulates as a 63-kD full-length form on the outer mitochondrial membrane, where it can recruit Parkin to impaired mitochondria. Thus, differential localization to the inner and outer mitochondrial membranes appears to regulate PINK1 stability and function. 相似文献
17.
Remoli AL Marsili G Perrotti E Gallerani E Ilari R Nappi F Cafaro A Ensoli B Gavioli R Battistini A 《The Biochemical journal》2006,396(2):371-380
18.
19.
The proteasome inhibitors lactacystin, clastro lactacystin beta-lactone, or tri-leucine vinyl sulfone (NLVS), in the presence of [(35)S]cysteine/methionine, caused increased incorporation of (35)S into cellular proteins, even when protein synthesis was inhibited by cycloheximide. This effect was blocked by incubation with the glutathione synthesis inhibitor buthionine sulfoximine. Proteasome inhibitors also enhanced total glutathione levels, increased reduced/oxidized glutathione ratio (GSH/GSSG) and upregulated gamma-glutamylcysteine synthetase (rate-limiting in glutathione synthesis). Micromolar concentrations of GSH, GSSG, or cysteine stimulated the chymotrypsin-like activity of purified 20S proteasome, but millimolar GSH or GSSG was inhibitory. Interestingly, GSH did not affect 20S proteasome's trypsin-like activity. Enhanced proteasome glutathiolation was verified when purified preparations of the 20S core enzyme complex were incubated with [(35)S]GSH after pre-incubation with any of the inhibitors. NLVS, lactacystin or clastro lactacystin beta-lactone may promote structural modification of the 20S core proteasome, with increased exposure of cysteine residues, which are prone to S-thiolation. Three main conclusions can be drawn from the present work. First, proteasome inhibitors alter cellular glutathione metabolism. Second, proteasome glutathiolation is enhanced by inhibitors but still occurs in their absence, at physiological GSH and GSSG levels. Third, proteasome glutathiolation seems to be a previously unknown mechanism of proteasome regulation in vivo. 相似文献
20.
Hegedus B Dasgupta B Shin JE Emnett RJ Hart-Mahon EK Elghazi L Bernal-Mizrachi E Gutmann DH 《Cell Stem Cell》2007,1(4):443-457
Individuals with neurofibromatosis type 1 (NF1) develop abnormalities of both neuronal and glial cell lineages, suggesting that the NF1 protein neurofibromin is an essential regulator of neuroglial progenitor function. In this regard, Nf1-deficient embryonic telencephalic neurospheres exhibit increased self-renewal and prolonged survival as explants in vivo. Using a newly developed brain lipid binding protein (BLBP)-Cre mouse strain to study the role of neurofibromin in neural progenitor cell function in the intact animal, we now show that neuroglial progenitor Nf1 inactivation results in increased glial lineage proliferation and abnormal neuronal differentiation in vivo. Whereas the glial cell lineage abnormalities are recapitulated by activated Ras or Akt expression in vivo, the neuronal abnormalities were Ras- and Akt independent and reflected impaired cAMP generation in Nf1-deficient cells in vivo and in vitro. Together, these findings demonstrate that neurofibromin is required for normal glial and neuronal development involving separable Ras-dependent and cAMP-dependent mechanisms. 相似文献