首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Inactivation of voltage-gated Kv1 channels can be altered by Kvbeta subunits, which block the ion-conducting pore to induce a rapid ('N-type') inactivation. Here, we investigate the mechanisms and structural basis of Kvbeta1.3 interaction with the pore domain of Kv1.5 channels. Inactivation induced by Kvbeta1.3 was antagonized by intracellular PIP(2). Mutations of R5 or T6 in Kvbeta1.3 enhanced Kv1.5 inactivation and markedly reduced the effects of PIP(2). R5C or T6C Kvbeta1.3 also exhibited diminished binding of PIP(2) compared with wild-type channels in an in vitro lipid-binding assay. Further, scanning mutagenesis of the N terminus of Kvbeta1.3 revealed that mutations of L2 and A3 eliminated N-type inactivation. Double-mutant cycle analysis indicates that R5 interacts with A501 and T480 of Kv1.5, residues located deep within the pore of the channel. These interactions indicate that Kvbeta1.3, in contrast to Kvbeta1.1, assumes a hairpin structure to inactivate Kv1 channels. Taken together, our findings indicate that inactivation of Kv1.5 is mediated by an equilibrium binding of the N terminus of Kvbeta1.3 between phosphoinositides (PIPs) and the inner pore region of the channel.  相似文献   

2.
The T1 domain is a cytosolic NH2-terminal domain present in all Kv (voltage-dependent potassium) channels, and is highly conserved between Kv channel subfamilies. Our characterization of a truncated form of Kv1.5 (Kv1.5deltaN209) expressed in myocardium demonstrated that deletion of the NH2 terminus of Kv1.5 imparts a U-shaped inactivation-voltage relationship to the channel, and prompted us to investigate the NH2 terminus as a regulatory site for slow inactivation of Kv channels. We examined the macroscopic inactivation properties of several NH2-terminal deletion mutants of Kv1.5 expressed in HEK 293 cells, demonstrating that deletion of residues up to the T1 boundary (Kv1.5deltaN19, Kv1.5deltaN91, and Kv1.5deltaN119) did not alter Kv1.5 inactivation, however, deletion mutants that disrupted the T1 structure consistently exhibited inactivation phenotypes resembling Kv1.5deltaN209. Chimeric constructs between Kv1.5 and the NH2 termini of Kv1.1 and Kv1.3 preserved the inactivation kinetics observed in full-length Kv1.5, again suggesting that the Kv1 T1 domain influences slow inactivation. Furthermore, disruption of intersubunit T1 contacts by mutation of residues Glu(131) and Thr(132) to alanines resulted in channels exhibiting a U-shaped inactivation-voltage relationship. Fusion of the NH2 terminus of Kv2.1 to the transmembrane segments of Kv1.5 imparted a U-shaped inactivation-voltage relationship to Kv1.5, whereas fusion of the NH2 terminus of Kv1.5 to the transmembrane core of Kv2.1 decelerated Kv2.1 inactivation and abolished the U-shaped voltage dependence of inactivation normally observed in Kv2.1. These data suggest that intersubunit T1 domain interactions influence U-type inactivation in Kv1 channels, and suggest a generalized influence of the T1 domain on U-type inactivation between Kv channel subfamilies.  相似文献   

3.
Nifedipine can block K(+) currents through Kv1.5 channels in an open-channel manner (32). Replacement of internal and external K(+) with equimolar Rb(+) or Cs(+) reduced the potency of nifedipine block of Kv1.5 from an IC(50) of 7.3 microM (K(+)) to 16.0 microM (Rb(+)) and 26.9 microM (Cs(+)). The voltage dependence of block was unaffected, and a single binding site block model was used to describe block for all three ions. By varying ion species at the intra- and extracellular mouth of the channel and by using a nonconducting W472F-Kv1.5 mutant, we demonstrated that block was conditioned by the ion permeating the pore and, to a lesser extent, by the extracellular ion species alone. In Kv1.5, the outer pore mutations R487V and R487Y reduced nifedipine potency close to that of Kv4.2 and other Kv channels with an equivalent valine. Although changing this residue can affect C-type inactivation of Kv channels, the normalized reduction and time course of currents blocked by nifedipine in 5, 135, and 300 mM extracellular K(+) concentration was the same. Similarly, a mean recovery time constant from nifedipine block of 316 ms was unchanged (332 ms) after 5-s prepulses to allow C-type inactivation. This is consistent with the conclusion that nifedipine block and C-type inactivation in the Kv1.5 channel can coexist but are mediated by distinct mechanisms coordinated by outer pore conformation.  相似文献   

4.
Although previous studies have revealed a role for the voltage-gated K+ channel alpha-subunit Kv1.5 (KCNA5) in the generation of the 4-aminopyridine (4-AP)-sensitive component of delayed rectification in mouse ventricles (IK,slow1), the phenotypic consequences of manipulating IK,slow1 expression in vivo in different (mouse) models are distinct. In these experiments, point mutations were introduced in the pore region of Kv1.5 to change the tryptophan (W) at position 461 to phenylalanine (F) to produce a nonconducting subunit, Kv1.5W461F, that is shown to function as a Kv1 subfamily-specific dominant negative (Kv1.5DN). With the use of the alpha-myosin heavy chain promoter to direct cardiac-specific expression, three lines of Kv1.5DN-expressing (C57BL6) transgenic mice were generated and characterized. Electrophysiological recordings from Kv1.5-DN-expressing left ventricular myocytes revealed that the micromolar 4-AP sensitive IK,slow1 is selectively eliminated. The attenuation of IK,slow1 is accompanied by increased ventricular action potential durations and marked QT prolongation. In contrast to previous findings in mice expressing a truncated (DN) Kv1.1 transgene; however, no electrical remodeling is evident in Kv1.5DN-expressing ventricular myocytes, and the (Kv1.5DN-induced) elimination of IK,slow1 does not result in spontaneous ventricular arrhythmias.  相似文献   

5.
Ancillary beta-subunits regulate the voltage-dependence and the kinetics of Kv currents. The Kvbeta proteins bind pyridine nucleotides with high affinity but the role of cofactor binding in regulating Kv currents remains unclear. We found that recombinant rat Kvbeta 1.3 binds NADPH (K(d)=1.8+/-0.02 microM) and NADP(+) (K(d)=5.5+/-0.9 microM). Site-specific modifications at Tyr-307 and Arg-316 decreased NADPH binding; whereas, K(d) NADPH was unaffected by the R241L mutation. COS-7 cells transfected with Kv1.5 cDNA displayed non-inactivating currents. Co-transfection with Kvbeta1.3 accelerated Kv activation and inactivation and induced a hyperpolarizing shift in voltage-dependence of activation. Kvbeta-mediated inactivation of Kv currents was prevented by the Y307F and R316E mutations but not by the R241L substitution. Additionally, the R316E mutation weakened Kvalpha-beta interaction. Inactivation of Kv currents by Kvbeta:R316E was restored when excess NADPH was included in the patch pipette. These observations suggest that NADPH binding is essential for optimal interaction between Kvalpha and beta subunits and for Kvbeta-induced inactivation of Kv currents.  相似文献   

6.
Voltage-dependent K(+) (Kv) currents in macrophages are mainly mediated by Kv1.3, but biophysical properties indicate that the channel composition could be different from that of T-lymphocytes. K(+) currents in mouse bone marrow-derived and Raw-264.7 macrophages are sensitive to Kv1.3 blockers, but unlike T-cells, macrophages express Kv1.5. Because Shaker subunits (Kv1) may form heterotetrameric complexes, we investigated whether Kv1.5 has a function in Kv currents in macrophages. Kv1.3 and Kv1.5 co-localize at the membrane, and half-activation voltages and pharmacology indicate that K(+) currents may be accounted for by various Kv complexes in macrophages. Co-expression of Kv1.3 and Kv1.5 in human embryonic kidney 293 cells showed that the presence of Kv1.5 leads to a positive shift in K(+) current half-activation voltages and that, like Kv1.3, Kv1.3/Kv1.5 heteromers are sensitive to r-margatoxin. In addition, both proteins co-immunoprecipitate and co-localize. Fluorescence resonance energy transfer studies further demonstrated that Kv1.5 and Kv1.3 form heterotetramers. Electrophysiological and pharmacological studies of different ratios of Kv1.3 and Kv1.5 co-expressed in Xenopus oocytes suggest that various hybrids might be responsible for K(+) currents in macrophages. Tumor necrosis factor-alpha-induced activation of macrophages increased Kv1.3 with no changes in Kv.1.5, which is consistent with a hyperpolarized shift in half-activation voltage and a lower IC(50) for margatoxin. Taken together, our results demonstrate that Kv1.5 co-associates with Kv1.3, generating functional heterotetramers in macrophages. Changes in the oligomeric composition of functional Kv channels would give rise to different biophysical and pharmacological properties, which could determine specific cellular responses.  相似文献   

7.
Evidence from both human and murine cardiomyocytes suggests that truncated isoforms of Kv1.5 can be expressed in vivo. Using whole-cell patch-clamp recordings, we have characterized the activation and inactivation properties of Kv1.5DeltaN209, a naturally occurring short form of human Kv1.5 that lacks roughly 75% of the T1 domain. When expressed in HEK 293 cells, this truncated channel exhibited a V(1/2) of -19.5 +/- 0.9 mV for activation and -35.7 +/- 0.7 mV for inactivation, compared with a V(1/2) of -11.2 +/- 0.3 mV for activation and -0.9 +/- 1.6 mV for inactivation in full-length Kv.15. Kv1.5DeltaN209 channels exhibited several features rarely observed in voltage-gated K(+) channels and absent in full-length Kv1.5, including a U-shaped voltage dependence of inactivation and "excessive cumulative inactivation," in which a train of repetitive depolarizations resulted in greater inactivation than a continuous pulse. Kv1.5DeltaN209 also exhibited a stronger voltage dependence to recovery from inactivation, with the time to half-recovery changing e-fold over 30 mV compared with 66 mV in full-length Kv1.5. During trains of human action potential voltage clamps, Kv1.5DeltaN209 showed 30-35% greater accumulated inactivation than full-length Kv1.5. These results can be explained with a model based on an allosteric model of inactivation in Kv2.1 (Klemic, K.G., C.-C. Shieh, G.E. Kirsch, and S.W. Jones. 1998. Biophys. J. 74:1779-1789) in which an absence of the NH(2) terminus results in accelerated inactivation from closed states relative to full-length Kv1.5. We suggest that differential expression of isoforms of Kv1.5 may contribute to K(+) current diversity in human heart and many other tissues.  相似文献   

8.
Yang XF  Yang Y  Lian YT  Wang ZH  Li XW  Cheng LX  Liu JP  Wang YF  Gao X  Liao YH  Wang M  Zeng QT  Liu K 《PloS one》2012,7(4):e36379
Selective blockade of Kv1.3 channels in effector memory T (T(EM)) cells was validated to ameliorate autoimmune or autoimmune-associated diseases. We generated the antibody directed against one peptide of human Kv1.3 (hKv1.3) extracellular loop as a novel and possible Kv1.3 blocker. One peptide of hKv1.3 extracellular loop E3 containing 14 amino acids (E314) was chosen as an antigenic determinant to generate the E314 antibody. The E314 antibody specifically recognized 63.8KD protein stably expressed in hKv1.3-HEK 293 cell lines, whereas it did not recognize or cross-react to human Kv1.1(hKv1.1), Kv1.2(hKv1.2), Kv1.4(hKv1.4), Kv1.5(hKv1.5), KCa3.1(hKCa3.1), HERG, hKCNQ1/hKCNE1, Nav1.5 and Cav1.2 proteins stably expressed in HEK 293 cell lines or in human atrial or ventricular myocytes by Western blotting analysis and immunostaining detection. By the technique of whole-cell patch clamp, the E314 antibody was shown to have a directly inhibitory effect on hKv1.3 currents expressed in HEK 293 or Jurkat T cells and the inhibition showed a concentration-dependence. However, it exerted no significant difference on hKv1.1, hKv1.2, hKv1.4, hKv1.5, hKCa3.1, HERG, hKCNQ1/hKCNE1, L-type Ca(2+) or voltage-gated Na(+) currents. The present study demonstrates that the antibody targeting the E314 peptide of hKv1.3 pore region could be a novel, potent and specific hKv1.3 blocker without affecting a variety of closely related K(v)1 channels, KCa3.1 channels and functional cardiac ion channels underlying central nervous system (CNS) disorders or drug-acquired arrhythmias, which is required as a safe clinic-promising channel blocker.  相似文献   

9.
Voltage-dependent K(+) channels (Kv) are involved in the proliferation of many types of cells, but the mechanisms by which their activity is related to cell growth remain unclear. Kv antagonists inhibit the proliferation of mammalian cells, which is of physiological relevance in skeletal muscle. Although myofibres are terminally differentiated, some resident myoblasts may re-enter the cell cycle and proliferate. Here we report that the expression of Kv1.5 is cell-cycle dependent during myoblast proliferation. In addition to Kv1.5 other Kv, such as Kv1.3, are also up-regulated. However, pharmacological evidence mainly implicates Kv1.5 in myoblast growth. Thus, the presence of S0100176, a Kv antagonist, but not margatoxin and dendrotoxin, led to cell cycle arrest during the G(1)-phase. The use of selective cell cycle blockers showed that Kv1.5 was transiently accumulated during the early G(1)-phase. Furthermore, while myoblasts treated with S0100176 expressed low levels of cyclin A and D(1), the expression of p21(cip-1) and p27(kip1), two cyclin-dependent kinase inhibitors, increased. Our results indicate that the cell cycle-dependent expression of Kv1.5 is involved in skeletal muscle cell proliferation.  相似文献   

10.
Lu Y  Hanna ST  Tang G  Wang R 《Life sciences》2002,71(12):1465-1473
A large array of voltage-gated K(+) channel (Kv) genes has been identified in vascular smooth muscle tissues. This molecular diversity underlies the vast repertoire of native Kv channels that regulate the excitability of vascular smooth muscle tissues. The contributions of different Kv subunit gene products to the native Kv currents are poorly understood in vascular smooth muscle cells (SMCs). In the present study, Kv subunit-specific antibodies were applied intracellularly to selectively block various Kv channel subunits and the whole-cell outward Kv currents were recorded using the patch-clamp technique in rat mesenteric artery SMCs. Anti-Kv1.2 antibody (8 microg/ml) inhibited the Kv currents by 29.2 +/- 5.9% (n = 6, P < 0.05), and anti-Kv1.5 antibody (6 microg/ml) by 24.5 +/- 2.6% (n = 7, P < 0.05). Anti-Kv2.1 antibody inhibited the Kv currents in a concentration-dependent fashion (4-20 microg/ml). Co-application of antibodies against Kv1.2 and Kv2.1 (8 microg/ml each) induced an additive inhibition of Kv currents by 42.3 +/- 3.1% (n = 7, P < 0.05). In contrast, anti-Kv1.3 antibody (6 microg/ml) did not have any effect on the native Kv current (n = 6, P > 0.05). A control antibody (anti-GIRK1) also had no effect on the native Kv currents. This study demonstrates that Kv1.2, Kv1.5, and Kv2.1 subunit genes all contribute to the formation of the native Kv channels in rat mesenteric artery SMCs.  相似文献   

11.
Kv1.5 potassium channel represents a promising target for atrial fibrillation (AF) therapy. During AF, the renin–angiotensin system is markedly activated. Recent evidence indicates that angiotensin II (Ang II) can upregulate Kv1.5 channel, but the mechanism remains unknown. In this study, we report that Ang II-mediated transforming growth factor-beta1 (TGF-β1)/Smad2/3 and extracellular signal-regulated kinase (ERK) 1/2 signalings are involved in atrial Kv1.5 expression. In neonatal rat atrial myocytes, quantitative PCR and Western blotting revealed that Ang II upregulated TGF-β1, synapse-associated protein 97 (SAP97) and Kv1.5 expression in a time- and concentration-dependent manner. The Ang II-induced upregulation of Kv1.5, SAP97 and phosphorylated Smad2/3 (P-Smad2/3) were reversed by the Ang II type 1 (AT1) receptor antagonist losartan, an anti-TGF-β1 antibody and the ERK 1/2 inhibitor PD98059 but not by the AT2 receptor antagonist PD123319. mRNA knockdown of either Smad2 or Smad3 blocked Ang II-induced expression of Kv1.5 and SAP97. These data suggest that AT1 receptor/TGF-β1/P-Smad2/3 and ERK 1/2 signalings are involved in Ang II-induced Kv1.5 and SAP97 expression. Flow cytometry and Western blotting revealed that losartan and the anti-TGF-β1 antibody diminished Ang II-induced reactive oxygen species (ROS) generation and that the antioxidants diphenyleneiodonium and N-acetyl cysteine inhibited Ang II-induced expression of P-Smad2/3, phosphorylated ERK (P-ERK) 1/2, Kv1.5, SAP97, suggesting that ROS participate in Kv1.5 and SAP97 regulation by modulating Ang II-induced P-Smad2/3 and P-ERK 1/2 expression. In conclusion, we demonstrate that ROS-dependent Ang II/AT1 receptor/TGF-β1/P-Smad2/3 and Ang II/ERK 1/2 signalings are involved in atrial Kv1.5 and SAP97 expression. Antioxidants would be beneficial for AF treatment through inhibiting atrial Kv1.5 expression.  相似文献   

12.
BACKGROUND: The voltage-gated potassium channel Kv1.5 plays a critical role in the maintenance of the membrane potential. While protein degradation is one of the major mechanisms for the regulation of channel functions, little is known on the degradation mechanism of Kv1.5. METHODS AND RESULTS: Kv1.5 was expressed in COS cells and its degradation, intracellular localization, and channel activities were assessed by pulse-chase analysis, immunofluorescence, and patch clamp techniques, respectively. Expressed Kv1.5 had a half-life time of approximately 6.7 h, which was prolonged by the proteasome inhibitors of MG132, ALLN, proteasomal inhibitor 1, or lactacystine, but not by a lysosomal inhibitor chloroquine. MG132 increased the protein level of Kv1.5, as well as the level of its ubiquitinated form in a dose-dependent manner. Similar effects of MG132 on endogenous Kv1.5 were seen in cultured rat atrial cells. Within a cell, Kv1.5 was mainly localized in both the endoplasmic reticulum and Golgi apparatus. MG132 increased the immunoreactivity of Kv1.5 in these compartments and also increased Ik(ur) currents through the cell-surface Kv1.5. Pretreatment with either brefeldin A or colchicine abolished MG132-induced increase in Ik(ur) currents. CONCLUSION: Kv1.5 is degraded by the proteasome. The inhibition of the proteasome increased Ik(ur) currents secondary to stabilization of the channel protein in the endoplasmic reticulum/Golgi apparatus.  相似文献   

13.
KChAP and voltage-dependent K+ (Kv) beta-subunits are two different types of cytoplasmic proteins that interact with Kv channels. KChAP acts as a chaperone for Kv2.1 and Kv4.3 channels. It also binds to Kv1.x channels but, with the exception of Kv1.3, does not increase Kv1.x currents. Kvbeta-subunits are assembled with Kv1.x channels; they exhibit "chaperone-like" behavior and change gating properties. In addition, KChAP and Kvbeta-subunits interact with each other. Here we examine the consequences of this interaction on Kv currents in Xenopus oocytes injected with different combinations of cRNAs, including Kvbeta1.2, KChAP, and either Kv1.4, Kv1.5, Kv2.1, or Kv4.3. We found that KChAP attenuated the depression of Kv1.5 currents produced by Kvbeta1.2, and Kvbeta1.2 eliminated the increase of Kv2.1 and Kv4.3 currents produced by KChAP. Both KChAP and Kvbeta1.2 are expressed in cardiomyocytes, where Kv1.5 and Kv2.1 produce sustained outward currents and Kv4.3 and Kv1.4 generate transient outward currents. Because they interact, either KChAP or Kvbeta1.2 may alter both sustained and transient cardiac Kv currents. The interaction of these two different classes of modulatory proteins may constitute a novel mechanism for regulating cardiac K+ currents.  相似文献   

14.
Overexpression of a dominant-negative truncated Kv1.1 (Kv1DN) polypeptide in the mouse heart resulted in marked attenuation of a 4-aminopyridine (4-AP)-sensitive current, IK,slow1. We used recombinant adeno-associated virus (rAAV) as a vector for direct delivery of Kv1.5 into the mouse myocardium in order to normalize the action potential duration (APD) 6 months after injection. The injection of rAAV-Kv1.5 reconstituted the 4-AP-sensitive outward potassium currents, shortened the APD, and eliminated spontaneous early afterdepolarizations. Immunoblots detected the FL-Kv1.5 polypeptides only in rAAV-Kv1.5-infected hearts. These data demonstrate long-term expression of 4-AP-sensitive potassium currents in ventricular myocytes by gene transfer using rAAV vector encodes Kv1.5.  相似文献   

15.
Because structural remodeling of several proteins, including ion channels, may underlie the abnormal action potentials of Purkinje cells (PCs) that survive in the 48 hr infarcted zone of the canine heart (IZPCs), we sought to determine the subcellular structure and function of the KV1.5 (KCNA5) protein in single IZPCs. Clustering of the Kv1.5 subunit in axons is regulated by a synapse-associated protein, SAP97, and is linked to an actin-binding protein, cortactin, and an intercellular adhesion molecule, N-cadherin. To understand the functional remodeling of the Kv1.5 channel and its regulation in IZPCs, Kv1.5 currents in PCs were measured as the currents blocked by 10 µM RSD1379 using patch-clamp techniques. Immunocytochemistry and confocal imaging were used for both single and aggregated IZPCs vs normal PCs (NZPCs) to determine the relationship of Kv1.5 with SAP-97, cortactin and N-cadherin. In IZPCs, both the sarcolemma (SL) and intercalated disk (ID) Kv1.5 protein are abundant, and the amount of cytosolic Kv1.5 protein is greatly increased. SAP-97 is also increased at IDs and has notable cytosolic localization suggesting that SAP-97 may regulate the functional expression and stabilization of Kv1.5 channels in IZPCs. Cortactin, which is located with N-cadherin at IDs in NZPCs, remains at IDs but begins to dissociate from N-cadherin, often forming ring structures and colocalizing with Kv1.5 within IZPCs. At the same time, cortactin/Kv1.5 colocalization is increased at the ID, suggesting an ongoing active process of membrane trafficking of the channel protein. Finally, the Kv1.5 current, measured as the RSD1379-sensitive current, at +40 mV did not differ between NZPCs (0.81±0.24 pA/pF, n = 14) and IZPCs (0.83±0.21 pA/pF, n = 13, NS). In conclusion, the subcellular structural remodeling of Kv1.5, SAP97 and cortactin maintained and normalized the function of the Kv1.5 channel in Purkinje cells that survived myocardial infarction.  相似文献   

16.
Crystal structures of potassium (K+) channels reveal that the selectivity filter, the narrow portion of the pore, is only ∼3-Å wide and buttressed from behind, so that its ability to expand is highly constrained, and the permeation of molecules larger than Rb+ (2.96 Å in diameter) is prevented. N-methyl-d-glucamine (NMDG+), an organic monovalent cation, is thought to be a blocker of Kv channels, as it is much larger (∼7.3 Å in mean diameter) than K+ (2.66 Å in diameter). However, in the absence of K+, significant NMDG+ currents could be recorded from human embryonic kidney cells expressing Kv3.1 or Kv3.2b channels and Kv1.5 R487Y/V, but not wild-type channels. Inward currents were much larger than outward currents due to the presence of intracellular Mg2+ (1 mM), which blocked the outward NMDG+ current, resulting in a strong inward rectification. The NMDG+ current was inhibited by extracellular 4-aminopyridine (5 mM) or tetraethylammonium (10 mM), and largely eliminated in Kv3.2b by an S6 mutation that prevents the channel from opening (P468W) and by a pore helix mutation in Kv1.5 R487Y (W472F) that inactivates the channel at rest. These data indicate that NMDG+ passes through the open ion-conducting pore and suggest a very flexible nature of the selectivity filter itself. 0.3 or 1 mM K+ added to the external NMDG+ solution positively shifted the reversal potential by ∼16 or 31 mV, respectively, giving a permeability ratio for K+ over NMDG+ (PK+/PNMDG+) of ∼240. Reversal potential shifts in mixtures of K+ and NMDG+ are in accordance with PK+/PNMDG+, indicating that the ions compete for permeation and suggesting that NMDG+ passes through the open state. Comparison of the outer pore regions of Kv3 and Kv1.5 channels identified an Arg residue in Kv1.5 that is replaced by a Tyr in Kv3 channels. Substituting R with Y or V allowed Kv1.5 channels to conduct NMDG+, suggesting a regulation by this outer pore residue of Kv channel flexibility and, as a result, permeability.  相似文献   

17.
18.
脑胶质瘤是原发性颅内恶性肿瘤。患者的5年存活率不足1%。目前,除手术切除外,尚无有效的治疗手段。近年来发现,脑胶质瘤发病可能与多种钾离子通道的异常表达有关。自噬是膜包裹部分胞质和细胞内需降解的蛋白质、细胞器,并与溶酶体一起降解其所包裹内容物的生理过程。诱导胶质瘤细胞的自噬,促进其凋亡是肿瘤治疗的一种新策略。本室前期研究发现,电压依赖型钾通道1.5(Kv1.5)参与胞膜小窖标志蛋白质(caveolae,Cav-1)介导的多种肿瘤细胞的增殖和凋亡,但是否参与胶质瘤细胞的自噬并不清楚。本文首先利用不同浓度的K+通道阻断剂四乙胺(tetra-ethylammonium,TEA)、Kv通道阻断剂四氨基吡啶(4-amino-pyridine,4-AP)和Kv1.5通道特异性阻断剂DPO-1(diphenyl phosphine oxide-1)分别在不同时间,作用于人脑胶质瘤细胞U251,观察其对细胞存活的影响。发现DPO-1对U251细胞具有双向作用:低浓度促进存活,高浓度抑制存活。其中,1 mmol/L DPO-1处理6 h,可促进自噬相关蛋白质LC3的表达,而抑制mTOR信号蛋白质的磷酸化水平,表明Kv1.5通道可能参与胶质瘤细胞的自噬。然后,利用基因转染技术分别敲低和过表达Kv1.5通道的蛋白质水平,发现敲低Kv1.5通道蛋白,促进胶质瘤细胞的自噬,激活ERK信号通路,而过表达Kv1.5通道蛋白,则抑制胶质瘤细胞的自噬。进一步利用流式细胞技术观察细胞凋亡,发现改变Kv1.5通道蛋白的表达水平,可诱发细胞早期凋亡。提示Kv1.5通道参与人脑胶质瘤细胞的自噬过程。这为临床利用特异性Kv通道阻断剂靶向治疗胶质瘤提供了新的理论和实验依据。  相似文献   

19.
The aim of this study was to elucidate the mechanisms for regulations of cardiac Kv1.5 channel expression. We particularly focused on the role of heat shock proteins (Hsps). We tested the effects of Hsps on the stability of Kv1.5 channels using biochemical and electrophysiological techniques: co-expression of Kv1.5 and Hsp family proteins in mammalian cell lines, followed by Western blotting, immunoprecipitation, pulse-chase analysis, immunofluorescence and whole-cell patch clamp. Hsp70 and heat shock factor 1 increased the expression of Kv1.5 protein in HeLa and COS7 cells, whereas either Hsp40, 27 or 90 did not. Hsp70 prolonged the half-life of Kv1.5 protein. Hsp70 was co-immunoprecipitated and co-localized with Kv1.5-FLAG. Hsp70 significantly increased the immunoreactivity of Kv1.5 in the endoplasmic reticulum, Golgi apparatus and on the cell membrane. Hsp70 enhanced Kv1.5 current of transfected cells, which was abolished by pretreatment with brefeldin A or colchicine. Thus, Hsp70, but not other Hsps, stabilizes functional Kv1.5 protein.  相似文献   

20.
Endothelial injury related to oxidative stress is a key event in cardiovascular diseases, such as hypertension and atherosclerosis. The activation of the redox-sensitive Kv1.5 potassium channel mediates mitochondrial reactive oxygen species (ROS)-induced apoptosis in vascular smooth muscle cells and some cancer cells. Kv1.5 channel is therefore taken as a new potential therapeutic target for pulmonary hypertension and cancers. Although Kv1.5 is abundantly expressed in vascular endothelium, there is little knowledge of its role in endothelial injury related to oxidative stress. We found that DPO-1, a specific inhibitor of Kv1.5, attenuated H2O2-evoked endothelial cell apoptosis in an in vivo rat carotid arterial model. In human umbilical vein endothelial cells (HUVECs) and human pulmonary arterial endothelial cells (HPAECs), angiotensin II and oxLDL time- or concentration-dependently enhanced Kv1.5 protein expression in parallel with the production of intracellular ROS and endothelial cell injury. Moreover, siRNA-mediated knockdown of Kv1.5 attenuated, whereas adenovirus-mediated Kv1.5 cDNA overexpression enhanced oxLDL–induced cellular damage, NADPH oxidase and mitochondria-derived ROS production and restored the decrease in protein expression of mitochondria uncoupling protein 2 (UCP2). Collectively, these data suggest that Kv1.5 may play an important role in oxidative vascular endothelial injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号