首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Rates of molecular evolution are known to vary considerably among lineages, partially due to differences in life-history traits such as generation time. The generation-time effect has been well documented in some eukaryotes, but its prevalence in prokaryotes is unknown. \"Because many species of Firmicute bacteria spend long periods of time as metabolically dormant spores, which could result in fewer DNA substitutions per unit time, they present an excellent system for testing predictions of the molecular clock hypothesis.\" To test whether spore-forming bacteria evolve more slowly than their non-spore-forming relatives, I used phylogenetic methods to determine if there were differences in rates of amino acid substitution between spore-forming and non-spore-forming lineages of Firmicute bacteria. Although rates of evolution do vary among lineages, I find no evidence for an effect of spore-formation on evolutionary rate and, furthermore, evolutionary rates are similar to those calculated for enteric bacteria. These results support the notion that variation in generation time does not affect evolutionary rates in bacterial lineages.  相似文献   

2.
3.
The HINTW gene on the female-specific W chromosome of chicken and other birds is amplified and present in numerous copies. Moreover, as HINTW is distinctly different from its homolog on the Z chromosome (HINTZ), is a candidate gene in avian sex determination, and evolves rapidly under positive selection, it shows several common features to ampliconic and testis-specific genes on the mammalian Y chromosome. A phylogenetic analysis within galliform birds (chicken, turkey, quail, and pheasant) shows that individual HINTW copies within each species are more similar to each other than to gene copies of related species. Such convergent evolution is most easily explained by recurrent events of gene conversion, the rate of which we estimated at 10(-6)-10(-5) per site and generation. A significantly higher GC content of HINTW than of other W-linked genes is consistent with biased gene conversion increasing the fixation probability of mutations involving G and C nucleotides. Furthermore, and as a likely consequence, the neutral substitution rate is almost twice as high in HINTW as in other W-linked genes. The region on W encompassing the HINTW gene cluster is not covered in the initial assembly of the chicken genome, but analysis of raw sequence reads indicates that gene copy number is significantly higher than a previous estimate of 40. While sexual selection is one of several factors that potentially affect the evolution of ampliconic, male-specific genes on the mammalian Y chromosome, data from HINTW provide evidence that gene amplification followed by gene conversion can evolve in female-specific chromosomes in the absence of sexual selection. The presence of multiple and highly similar copies of HINTW may be related to protein function, but, more generally, amplification and conversion offers a means to the avoidance of accumulation of deleterious mutations in nonrecombining chromosomes.  相似文献   

4.
    
Sex allocation theory has proved extremely successful at predicting when individuals should adjust the sex of their offspring in response to environmental conditions. However, we know rather little about the underlying genetics of sex ratio or how genetic architecture might constrain adaptive sex-ratio behavior. We examined how mutation influenced genetic variation in the sex ratios produced by the parasitoid wasp Nasonia vitripennis. In a mutation accumulation experiment, we determined the mutability of sex ratio, and compared this with the amount of genetic variation observed in natural populations. We found that the mutability (h(2)(m)) ranges from 0.001 to 0.002, similar to estimates for life-history traits in other organisms. These estimates suggest one mutation every 5-60 generations, which shift the sex ratio by approximately 0.01 (proportion males). In this and other studies, the genetic variation in N. vitripennis sex ratio ranged from 0.02 to 0.17 (broad-sense heritability, H(2)). If sex ratio is maintained by mutation-selection balance, a higher genetic variance would be expected given our mutational parameters. Instead, the observed genetic variance perhaps suggests additional selection against sex-ratio mutations with deleterious effects on other fitness traits as well as sex ratio (i.e., pleiotropy), as has been argued to be the case more generally.  相似文献   

5.
    
Recently, Fryxell and Moon (2005) examined methylation-dependent transition rates (5mC deamination rates), which were calculated by the difference between the CpG transition and GpC transition rates, using 4,437 transition mutations in CpG or GpC dinucleotides. They concluded that 5mC deamination rates were highly dependent on local GC content but not on local sequence lengths over which GC content was calculated or the genomic regions where the mutations occurred. Here, we reexamined these statements by using 292,216 CpG-->TpG/CpA and GpC-->GpT/ApC mutations, an increase of 66 times as much data. Contrary to Fryxell and Moon's conclusions, our analysis indicated that 5mC deamination rates in the human genome were dependent on both the local sequence length and the genomic region. Some explanations for their conclusions were provided.  相似文献   

6.
    
Mutation and recombination are the primary sources of genetic variation. To better understand the evolution of genetic variation, it is crucial to comprehensively investigate the processes involving mutation accumulation and recombination. In this study, we performed mutation accumulation experiments on four heterozygous diploid yeast species in the Saccharomycodaceae family to determine spontaneous mutation rates, mutation spectra, and losses of heterozygosity (LOH). We observed substantial variation in mutation rates and mutation spectra. We also observed high LOH rates (1.65–11.07×10−6 events per heterozygous site per cell division). Biases in spontaneous mutation and LOH together with selection ultimately shape the variable genome-wide nucleotide landscape in yeast species.  相似文献   

7.
8.
Intracellular symbiosis is widespread in the insect world where it plays an important role in evolution and adaptation. The weevil family Dryophthoridae (Curculionoidea) is of particular interest in intracellular symbiosis evolution with regard to the great economical and ecological features of these invasive insects, and the potential for comparative studies across a wide range of host plants and environments. Here, we have analyzed the intracellular symbiotic bacteria of 19 Dryophthoridae species collected worldwide, representing a wide range of plant species and tissues. All except one (Sitophilus linearis) harbor symbiotic bacteria within specialized cells (the bacteriocytes) assembled as an organ, the bacteriome. Phylogenetic analysis of the 16S rDNA gene sequence of the Dryophthoridae endosymbionts revealed three endosymbiotic clades belonging to gamma3-Proteobacteria and characterized by different GC contents and evolutionary rate. The genus name Candidatus Nardonella was proposed for the ancestral clade infesting Dryophthoridae 100 MYA and represented by five of nine bacterial genera studied. For this clade showing low GC content (40.5% GC) and high evolutionary rate (0.128 substitutions/site per 100 Myr), a single infection and subsequent cospeciation of the host and the endosymbionts was observed. In the two other insect lineage endosymbionts, with relatively high GC content (53.4% and 53.8% GC), competition with ancestral pathogenic bacteria might have occurred, leading to endosymbiont replacement in present-day last insects.  相似文献   

9.
Maternal smoking during pregnancy may affect newborn DNA methylation (DNAm). However, little is known about how these associations vary by a newborn’s sex and/or maternal nutrition. To fill in this research gap, we investigated epigenome-wide DNAm associations with maternal smoking during pregnancy in African American mother-newborn pairs. DNAm profiling in cord (n = 379) and maternal blood (n = 300) were performed using the Illumina HumanMethylation450 BeadChip array. We identified 12 CpG sites whose DNAm levels in cord blood were associated with maternal smoking, at a false discovery rate <5%. The identified associations in the GFI1 gene were more pronounced in male newborns than in females (= 0.002 for maternal smoking × sex interaction at cg18146737). We further observed that maternal smoking and folate level may interactively affect cord blood DNAm level at cg05575921 in the AHRR gene (= 5.0 × 10?4 for interaction): compared to newborns unexposed to maternal smoking and with a high maternal folate level (>19.2 nmol/L), the DNAm level was about 0.03 lower (P = 3.6 × 10?4) in exposed newborns with a high maternal folate level, but was 0.08 lower (P = 1.2 × 10?8) in exposed newborns with a low maternal folate level. Our data suggest that adequate maternal folate levels may partly counteract the impact of maternal smoking on DNAm. These findings may open new avenues of inquiry regarding sex differences in response to environmental insults and novel strategies to mitigate their intergenerational health effects through optimization of maternal nutrition.  相似文献   

10.
The reduction of mutation rates on the mammalian X chromosome relative to autosomes is most often explained in the literature as evidence of male-driven evolution. This hypothesis attributes lowered mutation rates on the X chromosome to the fact that this chromosome spends less time in the germline of males than in the germline of females. In contrast to this majority view, two articles argued that the patterns of mutation rates across chromosomes are inconsistent with male-driven evolution. One article reported a 40% reduction in synonymous substitution rates (Ks) for X-linked genes relative to autosomes in the mouse-rat lineage. The authors argued that this reduction is too dramatic to be explained by male-driven evolution and concluded that selection has systematically reduced mutation rate on the X chromosome to a level optimal for this male-hemizygous chromosome. More recently, a second article found that chromosomal mutation rates in both the human-mouse and mouse-rat lineages were so heterogeneous that the X chromosome was not an outlier. Here again, the authors argued that this is at odds with male-driven evolution and suggested that selection has modulated chromosomal mutation rates to locally optimal levels, thus extending the argument of the first mentioned article to include autosomes. Here, we reexamine these conclusions using mouse-rat and human-mouse coding-region data. We find a more modest reduction of Ks on the X chromosome, but our results contradict the finding that the X chromosome is not distinct from autosomes. Multiple statistical tests show that Ks rates on the X chromosome differ systematically from the autosomes in both lineages. We conclude that the moderate reduction of mutation rate on the X chromosome of both lineages is consistent with male-driven evolution; however, the large variance in mutation rates across chromosomes suggests that mutation rates are affected by additional factors besides male-driven evolution. Investigation of mutation rates by synteny reveals that synteny blocks, rather than entire chromosomes, might represent the unit of mutation rate variation.  相似文献   

11.
Based on the biochemical kinetics of DNA replication and mutagenesis, including misincorporation and correction, a model has been developed for studying the relationships among the mutation rate (u), the G + C content of the sequence (f), and the G + C proportion in the nucleotide precursor pool (N). Also a measure for the next-nucleotide effect, called the maximum capacity of the next-nucleotide effect (MC), has been proposed. Under the normal physiological conditions of mammalian germ cells, our results indicate: (1) the equilibrium G + C content in a sequence is approximately equal to the G + C proportion in the nucleotide precursor pool, i.e., fN, which is independent of the next-nucleotide effect; (2) an inverted-V-shaped distribution of mutation rates with respect to G + C contents is predicted, when the next-nucleotide effect is week, i.e., MC ≈ 1; (3) the distribution becomes flatter (i.e., inverted-U-shaped) as MC increases, but the peak at 50% GC is still observed when MC < 2; and (4) the peak disappears when MC > 2.8, that is, when the next-nucleotide effect becomes strong. Our results suggest that changes in the relative concentrations of nucleotide precursors can cause variations among genes both in mutation rate and in G + C content and that compositional isochores (DNA segments with a homogeneous G + C content) can arise in a genome due to differences in replication times of DNA segments. Correspondence to: W.-H. Li  相似文献   

12.
Summary We have investigated the relationship between the G + C content of silent (synonymous) sites in codons and the amino acid composition of encoded proteins for approximately 1,600 human genes. There are positive correlations between silent site G + C and the proportions of codons for Arg, Pro, Ala, Trp, His, Gln, and Leu and negative ones for Tyr, Phe, Asn, Ile, Lys, Asp, Thr, and Glu. The median proteins coded by groups of genes that differ in silent-site G + C content also differ in amino acid composition, as do some proteins coded by homologous genes. The pattern of compositional change can be largely explained by directional mutation pressure, the genetic code, and differences in the frequencies of accepted amino acid substitutions; the shifts in protein composition are likely to be selectively neutral.Offprint requests to: D.W. Collins  相似文献   

13.
G+C3 structuring along the genome: a common feature in prokaryotes   总被引:1,自引:0,他引:1  
The heterogeneity of gene nucleotide content in prokaryotic genomes is commonly interpreted as the result of three main phenomena: (1) genes undergo different selection pressures both during and after translation (affecting codon and amino acid choice); (2) genes undergo different mutational pressure whether they are on the leading or lagging strand; and (3) genes may have different phylogenetic origins as a result of lateral transfers. However, this view neglects the necessity of organizing genetic information on a chromosome that needs to be replicated and folded, which may add constraints to single gene evolution. As a consequence, genes are potentially subjected to different mutation and selection pressures, depending on their position in the genome. In this paper, we analyze the structuring of different codon usage measures along completely sequenced bacterial genomes. We show that most of them are highly structured, suggesting that genes have different base content, depending on their location on the chromosome. A peculiar pattern of genome structure, with a tendency toward an A+T-enrichment near the replication terminus, is found in most bacterial phyla and may reflect common chromosome constraints. Several species may have lost this pattern, probably because of genome rearrangements or integration of foreign DNA. We show that in several species, this enrichment is associated with an increase of evolutionary rate and we discuss the evolutionary implications of these results. We argue that structural constraints acting on the circular chromosome are not negligible and that this natural structuring of bacterial genomes may be a cause of overestimation in lateral gene transfer predictions using codon composition indices.  相似文献   

14.
Because avian females are heterogametic, the reverse of mammals, avian sex chromosomes undergo significantly different patterns and numbers of DNA replications than do those in mammals. This makes the W (female-specific) and the Z chromosomes an excellent model system for the study of the replicative division hypothesis, which purports that DNA substitution rate is determined by the number of germline replications. The sex-specific chromosome in birds (the W) is predicted to change at the slowest rate of all avian chromosomes because it undergoes the fewest rounds of replication per unit of evolutionary time. Using published data on gametogenesis from a variety of sources, we estimated the ratio of male-to-female germline replications (c) in galliforms and anseriforms to be approximately 4.4. The value of c should predict the value of the ratio of male-to-female mutation rates (αm) if the replicative division hypothesis is true. Homologous DNA sequences including an intron and parts of two exons of the CHD gene were obtained from the W and the Z chromosomes in ostrich, sage grouse, canvasback duck, tundra swan, and snow goose. The exons show significantly different nucleotide composition from the introns, and the W-linked exons show evidence of relaxed constraint. The Z-linked intron is diverging ≈ 3.1 times faster than the W-linked intron. From this, αm was calculated to be approximately 4.1, with a confidence interval of 3.1 to 5.1. The data support the idea that the number of replicative divisions is a major determinant of substitution rate in the Eoavian genome. Received: 19 January 1999 / Accepted: 8 June 1999  相似文献   

15.
To study sex differences in mutation rate in primates, we sequenced the third introns of the AMGX and AMGY genes from humans, orangutans, and squirrel monkeys and estimated that the male-to-female ratio of mutation rate is α= 5.14 with the 95% confidence interval (2.42, 16.6). Combining this data set and the data sets from ZFX/ZFY and SMCX/SMCY introns, we obtained an estimate of α= 5.06 with the 95% confidence interval reduced to (3.24, 8.79). The α value is significantly higher in higher primates than in rodents. Received: 19 August 1996 / Accepted: 22 November 1996  相似文献   

16.
Although bacterial species display wide variation in their overall GC contents, the genes within a particular species' genome are relatively similar in base composition. As a result, sequences that are novel to a bacterial genome—i.e., DNA introduced through recent horizontal transfer—often bear unusual sequence characteristics and can be distinguished from ancestral DNA. At the time of introgression, horizontally transferred genes reflect the base composition of the donor genome; but, over time, these sequences will ameliorate to reflect the DNA composition of the new genome because the introgressed genes are subject to the same mutational processes affecting all genes in the recipient genome. This process of amelioration is evident in a large group of genes involved in host-cell invasion by enteric bacteria and can be modeled to predict the amount of time required after transfer for foreign DNA to resemble native DNA. Furthermore, models of amelioration can be used to estimate the time of introgression of foreign genes in a chromosome. Applying this approach to a 1.43-megabase continuous sequence, we have calculated that the entire Escherichia coli chromosome contains more than 600 kb of horizontally transferred, protein-coding DNA. Estimates of amelioration times indicate that this DNA has accumulated at a rate of 31 kb per million years, which is on the order of the amount of variant DNA introduced by point mutations. This rate predicts that the E. coli and Salmonella enterica lineages have each gained and lost more than 3 megabases of novel DNA since their divergence. Received: 7 July 1996 / Accepted: 27 September 1996  相似文献   

17.
18.

Background

High urine volume enhances urinary free cortisol (UFF) and cortisone (UFE) excretion rates in normal-weight adults and children. Renal excretion rates of glucocorticoids (GC) and their metabolites are frequently altered in obesity. The aim of the present study was to investigate whether UFF and UFE excretion is also affected by urine volume in severely obese subjects.

Experimental

In 24-h urine samples of 59 extremely obese subjects (mean BMI 45.3 ± 8.9 kg/m2) and 20 healthy lean subjects (BMI 22.1 ± 1.8 kg/m2), UFF and UFE, tetrahydrocortisol (THF), 5α-tetrahydrocortisol (5α-THF), and tetrahydrocortisone (THE) were quantified by RIA. The sum of THF, 5α-THF, and THE (GC3), the three major GC metabolites, reflects daily cortisol secretion. 11β-Hydroxysteroid dehydrogenase type 2 (11β-HSD2) activity was assessed by the ratio UFE/UFF. Daily GC excretion rates were corrected for urine creatinine and adjusted for gender and body weight.

Results

In extremely obese subjects, urine volume was significantly associated with creatinine-corrected UFE and 11β-HSD2 activity after adjustment for gender and BMI (r = 0.47, p = 0.0002 and r = 0.31, p = 0.02, respectively). However, urine volume was not associated with creatinine-corrected UFF and GC3 (p = 0.4 and p = 0.6, respectively). In lean controls, urine volume was significantly associated with creatinine-corrected UFE and UFF (r = 0.58, p = 0.01 and r = 0.55, p = 0.02, respectively), whereas urine volume was not associated with 11β-HSD2 activity after appropriate adjustment (p = 0.3).

Conclusions

In severe obesity, in contrast to normal weight, renal excretion of UFE, but not of UFF is affected by fluid intake. This discrepancy may be due to the increased renal 11β-HSD2 activity in obesity.  相似文献   

19.
Sticholysin I (St I) is a pore-forming toxin (PFT) produced by the Caribbean Sea anemone Stichodactyla helianthus belonging to the actinoporin protein family, a unique class of eukaryotic PFT exclusively found in sea anemones. As for actinoporins, it has been proposed that the presence of sphingomyelin (SM) and the coexistence of lipid phases increase binding to the target membrane. However, little is known about the role of membrane structure and dynamics (phase state, fluidity, presence of lipid domains) on actinoporins' activity or which regions of the membrane are the most favorable platforms for protein insertion. To gain insight into the role of SM on the interaction of St I to lipid membranes we studied their binding to monolayers of phosphatidylcholine (PC) and SM in different proportions. Additionally, the effect of acyl chain length and unsaturation, two features related to membrane fluidity, was evaluated on St I binding to monolayers. This study revealed that St I binds and penetrates preferentially and with a faster kinetic to liquid-expanded films with high lateral mobility and moderately enriched in SM. A high content of SM induces a lower lateral diffusion and/or liquid-condensed phases, which hinder St I binding and penetration to the lipid monolayer. Furthermore, the presence of lipid domain borders does not appear as an important factor for St I binding to the lipid monolayer.  相似文献   

20.
Chlorophyll content, one of the most important physiological parameters related to plant photosynthesis, is usually used to predict yield potential. To map the quantitative trait loci (QTLs) underlying the chlorophyll content of rice leaves, a double haploid (DH) population was developed from an indica/japonica (Zhenshan 97/Wuyujing 2) crossing and two backcross populations were established subsequently by backcrossing DH lines with each of their parents. The contents of chlorophyll a and chlorophyll b were determined by using a spectrophotometer to directly measure the leaf chlorophyll extracts. To determine the leaf chlorophyll retention along with maturation, all measurements were performed on the day of heading and were repeated 30 days later. A total of 60 QTLs were resolved for all the traits using these three populations. These QTLs were distributed on 10 rice chromosomes, except chromosomes 5 and 10; the closer the traits, the more clustering of the QTLs residing on common rice chromosomal regions. In general, the majority of QTLs that specify chlorophyll a content also play a role in determining chlorophyll b content. Strangely, chlorophyll content in this study was found mostly to be lacking or to have a negative correlation with yield. In both backcross F1 populations, overdominant (or underdominant) loci were more important than complete or partially dominant loci for main-effect QTLs and epistatic QTLs, thereby supporting previous findings that overdominant effects are the primary genetic basis for depression in inbreeding and heterosis in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号