首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nitric oxide (NO) is emerging as an important regulatory player in the Rhizobium-legume symbiosis, but its biological role in nodule functioning is still far from being understood. To unravel the signal transduction cascade and ultimately NO function, it is necessary to identify its molecular targets. This study provides evidence that glutamine synthetase (GS), a key enzyme for root nodule metabolism, is a molecular target of NO in root nodules of Medicago truncatula, being regulated by tyrosine (Tyr) nitration in relation to active nitrogen fixation. In vitro studies, using purified recombinant enzymes produced in Escherichia coli, demonstrated that the M. truncatula nodule GS isoenzyme (MtGS1a) is subjected to NO-mediated inactivation through Tyr nitration and identified Tyr-167 as the regulatory nitration site crucial for enzyme inactivation. Using a sandwich enzyme-linked immunosorbent assay, it is shown that GS is nitrated in planta and that its nitration status changes in relation to active nitrogen fixation. In ineffective nodules and in nodules fed with nitrate, two conditions in which nitrogen fixation is impaired and GS activity is reduced, a significant increase in nodule GS nitration levels was observed. Furthermore, treatment of root nodules with the NO donor sodium nitroprusside resulted in increased in vivo GS nitration accompanied by a reduction in GS activity. Our results support a role of NO in the regulation of nitrogen metabolism in root nodules and places GS as an important player in the process. We propose that the NO-mediated GS posttranslational inactivation is related to metabolite channeling to boost the nodule antioxidant defenses in response to NO.  相似文献   

2.
Regulation of the cytosolic isozyme of glutamine synthetase (GS(1); EC 6.3.1.2) was studied in leaves of Brassica napus L. Expression and immunodetection studies showed that GS(1) was the only active GS isozyme in senescing leaves. By use of [gamma-(32)P]ATP followed by immunodetection, it was shown that GS(1) is a phospho-protein. GS(1) is regulated post-translationally by reversible phosphorylation catalysed by protein kinases and microcystin-sensitive serine/threonine protein phosphatases. Dephosphorylated GS(1) is much more susceptible to degradation than the phosphorylated form. The phosphorylation status of GS(1) changes during light/dark transitions and depends in vitro on the ATP/AMP ratio. Phosphorylated GS(1) interacts with 14-3-3 proteins as verified by two different methods: a His-tag 14-3-3 protein column affinity method combined with immunodetection, and a far-Western method with overlay of 14-3-3-GFP. The degree of interaction with 14-3-3-proteins could be modified in vitro by decreasing or increasing the phosphorylation status of GS(1). Thus, the results demonstrate that 14-3-3 protein is an activator molecule of cytosolic GS and provide the first evidence of a protein involved in the activation of plant cytosolic GS. The role of post-translational regulation of cytosolic GS and interactions between phosphorylated cytosolic GS and 14-3-3 proteins in senescing leaves is discussed in relation to nitrogen remobilization.  相似文献   

3.
4.
5.
Lima L  Seabra A  Melo P  Cullimore J  Carvalho H 《Planta》2006,223(3):558-567
In this report we demonstrate that plastid glutamine synthetase of Medicago truncatula (MtGS2) is regulated by phosphorylation and 14-3-3 interaction. To investigate regulatory aspects of GS2 phosphorylation, we have produced non-phosphorylated GS2 proteins by expressing the plant cDNA in E. coli and performed in vitro phosphorylation assays. The recombinant isoenzyme was phosphorylated by calcium dependent kinase(s) present in leaves, roots and nodules. Using an (His)6-tagged 14-3-3 protein column affinity purification method, we demonstrate that phosphorylated GS2 interacts with 14-3-3 proteins and that this interaction leads to selective proteolysis of the plastid located isoform, resulting in inactivation of the isoenzyme. By site directed mutagenesis we were able to identify a GS2 phosphorylation site (Ser97) crucial for the interaction with 14-3-3s. Phosphorylation of this target residue can be functionally mimicked by replacing Ser97 by Asp, indicating that the introduction of a negative charge contributes to the interaction with 14-3-3 proteins and subsequent specific proteolysis. Furthermore, we document that plant extracts contain protease activity that cleaves the GS2 protein only when it is bound to 14-3-3 proteins following either phosphorylation or mimicking of phosphorylation by Ser97Asp.  相似文献   

6.
7.
8.
The glutamine synthetase (GS) gene family of Medicago truncatula Gaertn. contains three genes related to cytosolic GS (MtGSa, MtGSb, and MtGSc), although one of these (MtGSc) appears not to be expressed. Sequence analysis suggests that the genes are more highly conserved interspecifically rather than intraspecifically: MtGSa and MtGSb are more similar to their homologs in Medicago sativa and Pisum sativum than to each other. Studies in which gene-specific probes are used show that both MtGSa and MtGSb are induced during symbiotic root nodule development, although not coordinately. MtGSa is the most highly expressed GS gene in nodules but is also expressed to lower extents in a variety of other organs. MtGSb shows higher levels of expression in roots and the photosynthetic cotyledons of seedlings than in nodules or other organs. In roots, both genes are expressed in the absence of an exogenous nitrogen source. However the addition of nitrate leads to a short-term, 2- to 3-fold increase in the abundance of both mRNAs, and the addition of ammonium leads to a 2-fold increase in MtGSb mRNA. The nitrogen supply, therefore, influences the expression of the two genes in roots, but it is clearly not the major effector of their expression. In the discussion section, the expression of the GS gene family of the model legume M. truncatula is compared to those of other leguminous plants.  相似文献   

9.
10.
Administration of T3 (20 micrograms/100 g BW) for 3 days increases phosphorylation of several proteins in rat liver cytosol in vitro. To help elucidate the mechanism of T3-induced phosphorylation, we studied which protein kinase(s) mediate phosphorylation of endogenous cytosolic proteins. Five different protein kinases were obtained by DEAE+ cellulose column chromatographic fractionation of liver cytosol. When their ability to phosphorylate heat-inactivated cytosol was investigated, casein kinase, a cAMP independent protein kinase, showed the strongest effect. Casein kinase, purified by phosphocellulose chromatography, phosphorylated more than 10 cytosolic proteins. Several T3-dependent (and cAMP independent) phosphoproteins were included among these. One protein with Mr 39 X 10(3), of which phosphorylation is stimulated by T3 within five hours after injection, was the most active substrate for casein kinase. The results suggest that casein kinase is the enzyme responsible for phosphorylation of many rat liver cytosolic proteins and that several phosphoproteins, apparently under T3-regulation, might be phosphorylated by this enzyme.  相似文献   

11.
12.
A greenhouse experiment was carried out aiming to study the effect of iron deficiency on nitrogen fixation and ammonium assimilation in common bean nodules. Host-plant and nodule growth, symbiotic nitrogen fixation, glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were analyzed in two common bean varieties subjected to iron deficiency. Results showed that host-plant and nodules growth, nitrogen fixation and GS activity decreased when under Fe-deficiency against an important increase of ammonium accumulation and GDH activity. Tolerant variety Flamingo is clearly less affected by iron deficiency than the sensitive one, Coco blanc. The allocation of iron to nodules and Fe use-efficiency for nodule growth and symbiotic nitrogen fixation were on the basis of the symbiotic performance of Flamingo under iron deprivation. Under Fe-deficiency, GDH take over GS the ammonium assimilation activity, particularly in the tolerant variety.  相似文献   

13.
14.
15.
The changes in protein phosphorylation associated with bovine tracheal smooth muscle contraction were studied by labeling intact muscle strips with [32P]PO4(3-) and analyzing the phosphoproteins by two-dimensional gel electrophoresis. Among 20 to 30 phosphoproteins resolvable with the two-dimensional electrophoresis system, the phosphorylation of 12 proteins was reproducibly affected by treatment with carbachol, in a time-dependent manner. Five of these proteins have been identified as 20-kDa myosin light chain, caldesmon, synemin, and two isoelectric variants of desmin. The other 7 are low molecular weight (Mr less than 40,000) cytosolic proteins. One cytosolic protein and myosin light chain are quickly but transiently phosphorylated by carbachol, the peak of myosin light chain phosphorylation being at about 1 min after agonist addition. In contrast, both variants of desmin, synemin, caldesmon, and 5 cytosolic proteins are phosphorylated at varying rates and remain phosphorylated for the duration of carbachol action. These "late" phosphorylation changes occur simultaneously with the dephosphorylation of one cytosolic protein. These carbachol-induced phosphorylation changes, like the contractile response, appear to be calcium-dependent. The addition of 12-deoxyphorbol 13-isobutyrate, a protein kinase C activator, causes a dose-dependent, sustained contraction of tracheal smooth muscle which develops more slowly than that induced by carbachol. This contractile response is associated with the same protein phosphorylation changes as those observed after prolonged carbachol treatment. In contrast, forskolin, an adenylate cyclase activator and a potent smooth muscle relaxant, induces the phosphorylation protein 3 and one variant of desmin. These observations strongly suggest that different phosphoproteins may be mediators of tension development and tension maintenance in agonist-induced contraction of tracheal smooth muscle.  相似文献   

16.
17.
Purified rat liver ATP citrate-lyase is phosphorylated on serine residues by an insulin-stimulated cytosolic kinase activity partially purified from rat adipocytes [Yu, Khalaf & Czech (1987) J. Biol. Chem. 262, 16677-16685]. The Km for lyase phosphorylation by this hormone-sensitive kinase activity is approx. 3 microM. Two-dimensional tryptic-peptide mapping of the 32P-labelled lyase reveals that the kinase-catalysed phosphorylation occurs primarily on a specific peptide. In intact 32P-labelled adipocytes, insulin enhances the serine phosphorylation of ATP citrate-lyase by 2-3-fold. Tryptic digestion of the 32P-labelled lyase immunopurified from insulin-treated adipocytes also yields one major phosphopeptide. 32P-labelled lyase tryptic peptides derived from labelling experiments in vitro and in vivo exhibit identical electrophoretic and chromatographic migration profiles. Furthermore, radio-sequencing of the phosphopeptide from lyase 32P-labelled in vitro indicates that serine-3 from the N-terminus is phosphorylated by the insulin-stimulated cytosolic kinase, in agreement with previous studies on the position of the phosphoserine residue in ATP citrate-lyase isolated from insulin-treated cells. Taken together, the similarity in site-specific phosphorylation of ATP citrate-lyase from insulin-treated adipocytes to that catalysed by the hormone-activated cytosolic kinase in vitro strongly suggests that this kinase mediates insulin action on lyase phosphorylation in intact cells.  相似文献   

18.
19.
20.
Nitric oxide (NO) is a signaling and defense molecule of major importance in living organisms. In the model legume Medicago truncatula, NO production has been detected in the nitrogen fixation zone of the nodule, but the systems responsible for its synthesis are yet unknown and its role in symbiosis is far from being elucidated. In this work, using pharmacological and genetic approaches, we explored the enzymatic source of NO production in M. truncatula-Sinorhizobium meliloti nodules under normoxic and hypoxic conditions. When transferred from normoxia to hypoxia, nodule NO production was rapidly increased, indicating that NO production capacity is present in functioning nodules and may be promptly up-regulated in response to decreased oxygen availability. Contrary to roots and leaves, nodule NO production was stimulated by nitrate and nitrite and inhibited by tungstate, a nitrate reductase inhibitor. Nodules obtained with either plant nitrate reductase RNA interference double knockdown (MtNR1/2) or bacterial nitrate reductase-deficient (napA) and nitrite reductase-deficient (nirK) mutants, or both, exhibited reduced nitrate or nitrite reductase activities and NO production levels. Moreover, NO production in nodules was found to be inhibited by electron transfer chain inhibitors, and nodule energy state (ATP-ADP ratio) was significantly reduced when nodules were incubated in the presence of tungstate. Our data indicate that both plant and bacterial nitrate reductase and electron transfer chains are involved in NO synthesis. We propose the existence of a nitrate-NO respiration process in nodules that could play a role in the maintenance of the energy status required for nitrogen fixation under oxygen-limiting conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号