首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen fixation is one of the most important roles played by soil bacterial communities, as fixation supplies nitrogen to many ecosystems which are often N limited. As impacts on this functional group of bacteria might harm the ecosystem's health and reduce productivity, monitoring that particular group is important. Recently, a field trial with Bt white spruce, which constitutively expresses the Cry1Ab insecticidal toxin of Bacillus thuringiensis, was established. The Bt white spruce was shown to be resistant to spruce budworm. We investigated the possible impact of these genetically modified trees on soil nitrogen-fixing bacterial communities. The trial consisted of untransformed controls, GUS white spruce (transformed with the beta-glucuronidase gene), and Bt/GUS white spruce (which constitutively expresses both the Cry1Ab toxin and beta-glucuronidase) in a random design. Four years after planting, soil samples from the control and the two treatments from plantation as well as from two natural stands of white spruce were collected. Diazotroph diversity was assessed by extracting soil genomic DNA and amplifying a region of the nitrogenase reductase (nifH) gene, followed by cloning and sequencing. Analysis revealed that nitrogen-fixing communities did not differ significantly among the untransformed control, GUS white spruce, and Bt/GUS white spruce. Nevertheless, differences in diazotroph diversity were observed between white spruce trees from the plantation site and those from two natural stands, one of which grew only a few meters away from the plantation. We therefore conclude, in the absence of evidence that the presence of the B. thuringiensis cry1Ab gene had an effect on diazotroph communities, that either site and/or field preparation prior to planting seems to be more important in determining diazotroph community structure than the presence of Bt white spruce.  相似文献   

2.
A polyphasic approach has been developed to gain knowledge of suitable key indicators for the evaluation of environmental impact of genetically modified Bt 11 and Bt 176 corn lines on soil ecosystems. We assessed the effects of Bt corn (which constitutively expresses the insecticidal toxin from Bacillus thuringiensis, encoded by the truncated Cry1Ab gene) and non-Bt corn plants and their residues on rhizospheric and bulk soil eubacterial communities by means of denaturing gradient gel electrophoresis analyses of 16S rRNA genes, on the nontarget mycorrhizal symbiont Glomus mosseae, and on soil respiration. Microcosm experiments showed differences in rhizospheric eubacterial communities associated with the three corn lines and a significantly lower level of mycorrhizal colonization in Bt 176 corn roots. In greenhouse experiments, differences between Bt and non-Bt corn plants were detected in rhizospheric eubacterial communities (both total and active), in culturable rhizospheric heterotrophic bacteria, and in mycorrhizal colonization. Plant residues of transgenic plants, plowed under at harvest and kept mixed with soil for up to 4 months, affected soil respiration, bacterial communities, and mycorrhizal establishment by indigenous endophytes. The multimodal approach utilized in our work may be applied in long-term field studies aimed at monitoring the real hazard of genetically modified crops and their residues on nontarget soil microbial communities.  相似文献   

3.
A polyphasic approach has been developed to gain knowledge of suitable key indicators for the evaluation of environmental impact of genetically modified Bt 11 and Bt 176 corn lines on soil ecosystems. We assessed the effects of Bt corn (which constitutively expresses the insecticidal toxin from Bacillus thuringiensis, encoded by the truncated Cry1Ab gene) and non-Bt corn plants and their residues on rhizospheric and bulk soil eubacterial communities by means of denaturing gradient gel electrophoresis analyses of 16S rRNA genes, on the nontarget mycorrhizal symbiont Glomus mosseae, and on soil respiration. Microcosm experiments showed differences in rhizospheric eubacterial communities associated with the three corn lines and a significantly lower level of mycorrhizal colonization in Bt 176 corn roots. In greenhouse experiments, differences between Bt and non-Bt corn plants were detected in rhizospheric eubacterial communities (both total and active), in culturable rhizospheric heterotrophic bacteria, and in mycorrhizal colonization. Plant residues of transgenic plants, plowed under at harvest and kept mixed with soil for up to 4 months, affected soil respiration, bacterial communities, and mycorrhizal establishment by indigenous endophytes. The multimodal approach utilized in our work may be applied in long-term field studies aimed at monitoring the real hazard of genetically modified crops and their residues on nontarget soil microbial communities.  相似文献   

4.
Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a target species of transgenic corn (Zea mays L.) that expresses single and pyramided Bacillus thuringiensis (Bt) toxin. In 2014, S. frugiperda were collected from a light trap in North Carolina, and a total of 212 F1/F2 isofemale lines of S. frugiperda were screened for resistance to Bt and non-Bt corn. All of the 212 isolines were susceptible to corn tissue expressing Cry1A.105 + Cry2Ab, Cry1F + Cry1A.105 + Cry2Ab, and Cry1F + Cry1Ab + Vip3Aa20. Growth rate bioassays were performed to isolate non-recessive Bt resistance alleles. Seven individuals out of the 212 isofemale lines carried major non-recessive alleles conferring resistance to Cry1F. A pooled colony was created from the seven individuals. This colony was 151.21 times more resistant to Cry1F than a known-susceptible population and was also resistant to Cry1A.105, but was not resistant to Cry2Ab and Vip3Aa20. The results demonstrate that field populations of S. frugiperda collected from North Carolina are generally susceptible to Cry1F, but that some individuals carry resistant alleles. The data generated in this study can be used as baseline data for resistance monitoring.  相似文献   

5.
外源蛋白在环境中的残留与积累是转Bt基因作物环境安全评价的重要内容之一。我国已育成多个具有商业化前景的Bt稻品系,但目前多年种植Bt稻后Bt外源蛋白是否会在土壤中积累还不清楚。本研究在同一试验田连续9年种植了转cry1Ab/1Ac基因明恢63(华恢1号)和转cry2A基因明恢63水稻,采用酶联免疫吸附法(ELISA)跟踪监测了分蘖期和收获后60 d根际土中外源蛋白含量变化,试验第1年(2012年)和最后1年(2020年)还测定了苗期、开花期和成熟期根际土中外源蛋白含量。结果表明: 2012年,转cry1Ab/1Ac基因明恢63在苗期、分蘖期、开花期、成熟期和收获后60 d根际土中外源蛋白含量分别为1.25、1.77、1.97、1.71和0.30 ng·g-1,2020年分别为1.30、1.69、2.03、1.77和0.43 ng·g-1;2012年,转cry2A基因明恢63在苗期、分蘖期、开花期、成熟期和收获后60 d根际土中外源蛋白含量分别为0.91、1.52、1.53、1.37和0.12 ng·g-1,2020年分别为0.95、1.43、1.61、1.40和0.15 ng·g-1。多因素方差分析显示,时间效应对Bt外源蛋白积累不显著,而品种和生育期效应显著。Bt稻生长过程中根际土中可以检测出微量的Bt外源蛋白,但收获后60 d已经基本降解完毕,根际土中Bt外源蛋白含量不会随着种植时间的增加而累积。  相似文献   

6.
Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105, indicates that current Cry1-based maize hybrids face a challenge in managing S. frugiperda in Brazil and highlights the importance of effective insect resistance management for these technologies.  相似文献   

7.
A promoter of the PNZIP(Pharbitis nil leucine zipper)gene(1.459 kb)was cloned from Pharbitis nil and fused to the GUS(b-glucuronidase)and Bacillus thuringiensis endotoxin(Cry9C)genes.Several transgenic PNZIP::GUS and PNZIP::Cry9C cotton lines were developed by Agrobacterium-mediated transformation.Strong GUS staining was detected in the green tissues of the transgenic PNZIP::GUS cotton plants.In contrast,GUS staining in the reproductive structures such as petals,anther,and immature seeds of PNZIP::GUS cotton was very faint.Two transgenic PNZIP::Cry9C lines and one transgenic cauliflower mosaic virus(Ca MV)35S::Cry9C line were selected for enzyme-linked immunosorbent assay(ELISA)and insect bioassays.Expression of the Cry9C protein in the 35S::Cry9C line maintained a high level in most tissues ranging from24.6 to 45.5μg g~(-1) fresh weight.In green tissues such as the leaves,boll rinds,and bracts of the PNZIP::Cry9C line,the Cry9C protein accumulated up to 50.2,39.7,and 48.3μg g~(-1) fresh weight respectively.In contrast,seeds of the PNZIP::Cry9C line(PZ1.3)accumulated only 0.26μg g~(-1) fresh weight of the Cry9C protein,which was 100 times lower than that recorded for the seeds of the Ca MV 35S::Cry9C line.The insect bioassay showed that the transgenic PNZIP::Cry9C cotton plant exhibited strong resistance to both the cotton bollworm and the pink bollworm.The PNZIP promoter could effectively drive Bt toxin expression in green tissues of cotton and lower accumulated levels of the Bt protein in seeds.These features should allay public concerns about the safety of transgenic foods.We propose the future utility of PNZIP as an economical,environmentally friendly promoter in cotton biotechnology.  相似文献   

8.
Two populations of Trichoplusia ni that had developed resistance to Bacillus thuringiensis sprays (Bt sprays) in commercial greenhouse vegetable production were tested for resistance to Bt cotton (BollGard II) plants expressing pyramided Cry1Ac and Cry2Ab. The T. ni colonies resistant to Bacillus thuringiensis serovar kurstaki formulations were not only resistant to the Bt toxin Cry1Ac, as previously reported, but also had a high frequency of Cry2Ab-resistant alleles, exhibiting ca. 20% survival on BollGard II foliage. BollGard II-resistant T. ni strains were established by selection with BollGard II foliage to further remove Cry2Ab-sensitive alleles in the T. ni populations. The BollGard II-resistant strains showed incomplete resistance to BollGard II, with adjusted survival values of 0.50 to 0.78 after 7 days. The resistance to the dual-toxin cotton plants was conferred by two genetically independent resistance mechanisms: one to Cry1Ac and one to Cry2Ab. The 50% lethal concentration of Cry2Ab for the resistant strain was at least 1,467-fold that for the susceptible T. ni strain. The resistance to Cry2Ab in resistant T. ni was an autosomally inherited, incompletely recessive monogenic trait. Results from this study indicate that insect populations under selection by Bt sprays in agriculture can be resistant to multiple Bt toxins and may potentially confer resistance to multitoxin Bt crops.  相似文献   

9.
Insect resistance to Bacillus thuringiensis (Bt) crystal protein is a major threat to the long-term use of transgenic Bt crops. Gene stacking is a readily deployable strategy to delay the development of insect resistance while it may also broaden insecticidal spectrum. Here, we report the creation of transgenic rice expressing discrete Cry1Ab and Cry2Ab simultaneously from a single expression cassette using 2A self-cleaving peptides, which are autonomous elements from virus guiding the polycistronic viral gene expression in eukaryotes. The synthetic coding sequences of Cry1Ab and Cry2Ab, linked by the coding sequence of a 2A peptide from either foot and mouth disease virus or porcine teschovirus-1, regardless of order, were all expressed as discrete Cry1Ab and Cry2Ab at high levels in the transgenic rice. Insect bioassays demonstrated that the transgenic plants were highly resistant to lepidopteran pests. This study suggested that 2A peptide can be utilized to express multiple Bt genes at high levels in transgenic crops.  相似文献   

10.
Field studies were done to assess how much of the transgenic, insecticidal protein, Cry1Ab, encoded by a truncated cry1Ab gene from Bacillus thuringiensis (Bt), was released from Bt-maize MON810 into soil and whether bacterial communities inhabiting the rhizosphere of MON810 maize were different from those of the rhizosphere of nontransgenic maize cultivars. Bacterial community structure was investigated by SSCP (single-strand conformation polymorphism) of PCR-amplified 16S rRNA genes from community DNA. Using an improved extraction and detection protocol based on a commercially available ELISA, it was possible to detect Cry1Ab protein extracted from soils to a threshold concentration of 0.07 ng/g soil. From 100 ng of purified Cry1Ab protein added per gram of soil, only an average of 37% was extractable. At both field sites investigated, the amount of Cry1Ab protein in bulk soil of MON810 field plots was always lower than in the rhizosphere, the latter ranging from 0.1 to 10 ng/g soil. Immunoreactive Cry1Ab protein was also detected at 0.21 ng/g bulk soil 7 months after harvesting, i.e. in April of the following year. At this time, however, higher values were found in residues of leaves (21 ng/g) and of roots (183 ng/g), the latter corresponding to 12% of the Cry1Ab protein present in intact roots. A sampling 2 months later indicated further degradation of the protein. Despite the detection of Cry1Ab protein in the rhizosphere of MON810 maize, the bacterial community structure was less affected by the Cry1Ab protein than by other environmental factors, i.e. the age of the plants or field heterogeneities. The persistence of Cry1Ab protein emphasizes the importance of considering post-harvest effects on nontarget organisms.  相似文献   

11.
The application of Bacillus thuringiensis (Bt) and the growing of genetically-modified crops are currently practised to control infestations of crop-eating insects. The increasing use of these biopesticides could lead to an increase in Cry1Ab endotoxin in both terrestrial and aquatic environments. The aim of this study was to quantify levels of Cry1Ab endotoxin and locate its source in the environment. Agricultural soils and surface waters were spiked with crystals (biopesticide-Dipel®) or with pure Bt-corn endotoxin. Cry1Ab concentrations were then determined with immunoassays. Additionally, surface water, soils and sediments were sampled in an area sprayed with Bt kurstaki and at a site where genetically-modified corn expressing Cry1Ab is grown. Isotopic analysis was performed on the endotoxin from Bt and Bt corn to characterize the proportions of 13C/12C and 15N/14N. The results showed that Bt-corn endotoxin is degraded more rapidly in water than in soils (t1/2: 4 and 9 days, respectively), while crystals appeared to be more resilient, as expected. The isotopic patterns of 13C and 15N in Bt-corn endotoxin differed markedly from Bt, making it possible to track the source of Cry1Ab in the environment. Preliminary field surveys indicate that Cry1Ab is fairly uncommon in aquatic environments, being found only at trace concentrations when it is detected.  相似文献   

12.
Evolution of resistance in pests threatens the long-term efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays and transgenic crops. Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and Cry1Ac in some pests, including pink bollworm (Pectinophora gossypiella). Here we report that Cry1AbMod and Cry1AcMod were also effective against a laboratory-selected strain of pink bollworm resistant to Cry2Ab as well as to Cry1Ab and Cry1Ac. Resistance ratios based on the concentration of toxin killing 50% of larvae for the resistant strain relative to a susceptible strain were 210 for Cry2Ab, 270 for Cry1Ab, and 310 for Cry1Ac, but only 1.6 for Cry1AbMod and 2.1 for Cry1AcMod. To evaluate the interactions among toxins, we tested combinations of Cry1AbMod, Cry1Ac, and Cry2Ab. For both the resistant and susceptible strains, the net results across all concentrations tested showed slight but significant synergism between Cry1AbMod and Cry2Ab, whereas the other combinations of toxins did not show consistent synergism or antagonism. The results suggest that the modified toxins might be useful for controlling populations of pink bollworm resistant to Cry1Ac, Cry2Ab, or both.  相似文献   

13.
Transgenic rice to control stem borer damage is under development in China. To assess the potential of Bacillus thuringiensis (Bt) transgenes in stem borer control, the toxicity of five Bt protoxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba and Cry1Ca) against two rice stem borers, Sesamia inferens (pink stem borer) and Chilo suppressalis (striped stem borer), was evaluated in the laboratory by feeding neonate larvae on artificial diets containing Bt protoxins. The results indicated that Cry1Ca exhibited the highest level of toxicity to both stem borers, with an LC50 of 0.24 and 0.30 μg/g for C. suppressalis and S. inferens, respectively. However, S. inferens was 4-fold lower in susceptibility to Cry1Aa, and 6- and 47-fold less susceptible to Cry1Ab and Cry1Ba, respectively, compared to C. suppressalis. To evaluate interactions among Bt protoxins in stem borer larvae, toxicity assays were performed with mixtures of Cry1Aa/Cry1Ab, Cry1Aa/Cry1Ca, Cry1Ac/Cry1Ca, Cry1Ac/Cry1Ba, Cry1Ab/Cry1Ac, Cry1Ab/Cry1Ba, and Cry1Ab/Cry1Ca at 1:1 (w/w) ratios. All protoxin mixtures demonstrated significant synergistic toxicity activity against C. suppressalis, with values of 1.6- to 11-fold higher toxicity than the theoretical additive effect. Surprisingly, all but one of the Bt protoxin mixtures were antagonistic in toxicity to S. inferens. In mortality-time response experiments, S. inferens demonstrated increased tolerance to Cry1Ab and Cry1Ac compared to C. suppressalis when treated with low or high protoxin concentrations. The data indicate the utility of Cry1Ca protoxin and a Cry1Ac/Cry1Ca mixture to control both stem borer populations.  相似文献   

14.
The resistance to the Bacillus thuringiensis (Bt) toxin Cry2Ab in a greenhouse-originated Trichoplusia ni strain resistant to both Bt toxins Cry1Ac and Cry2Ab was characterized. Biological assays determined that the Cry2Ab resistance in the T. ni strain was a monogenic recessive trait independent of Cry1Ac resistance, and there existed no significant cross-resistance between Cry1Ac and Cry2Ab in T. ni. From the dual-toxin-resistant T. ni strain, a strain resistant to Cry2Ab only was isolated, and the Cry2Ab resistance trait was introgressed into a susceptible laboratory strain to facilitate comparative analysis of the Cry2Ab resistance with the susceptible T. ni strain. Results from biochemical analysis showed no significant difference between the Cry2Ab-resistant and -susceptible T. ni larvae in midgut proteases, including caseinolytic proteolytic activity and zymogram profile and serine protease activities, in midgut aminopeptidase and alkaline phosphatase activity, and in midgut esterases and hemolymph plasma melanization activity. For analysis of genetic linkage of Cry2Ab resistance with potential Cry toxin receptor genes, molecular markers for the midgut cadherin, alkaline phosphatase (ALP), and aminopeptidase N (APN) genes were identified between the original greenhouse-derived dual-toxin-resistant and the susceptible laboratory T. ni strains. Genetic linkage analysis showed that the Cry2Ab resistance in T. ni was not genetically associated with the midgut genes coding for the cadherin, ALP, and 6 APNs (APN1 to APN6) nor associated with the ABC transporter gene ABCC2. Therefore, the Cry2Ab resistance in T. ni is conferred by a novel but unknown genetic mechanism.  相似文献   

15.
Ingestion and excretion of two transgenic Bt corn varieties by slugs   总被引:1,自引:0,他引:1  
The release of transgenic Bacillus thuringiensis (Bt) corn expressing various Cry endotoxins has raised concern that these endotoxins are disseminated in the food web and may adversely affect non-target beneficial organisms, such as predators and organisms of the decomposer food web. We therefore investigated in a laboratory study, whether the Cry1Ab and Cry3Bb1 protein from Bt corn could potentially be transferred to such organisms by measuring the Cry protein content in the two common agricultural slug pests Arion lusitanicus and Deroceras reticulatum and their feces. We measured Cry1Ab and Cry3Bb1 protein concentration in leaves, intestines, and feces of corn leaf-fed slugs using ELISA and determined how much of the ingested protein is excreted by the slugs. Cry3Bb1 concentration in leaves of DKC5143Bt corn was significantly higher than Cry1Ab concentration in leaves of N4640Bt corn. While slugs were feeding on corn leaves, the Cry3Bb1 and Cry1Ab proteins were found in intestines and feces of both slug species. Bt protein concentrations in intestines of Cry3Bb1 corn-fed slugs were in both slug species higher than in Cry1Ab corn fed slugs, whereas no differences between Cry3Bb1 and Cry1Ab protein in feces were found. After slugs had ceased feeding on Bt corn, Cry1Ab was detectable in fresh slug feces for a significantly longer time and often in higher amounts than the Cry3Bb1. Our results indicate that both Cry proteins are likely to be transferred to higher trophic levels and to the decomposer food web. Since different Bt proteins seem to vary in their degradation, they have different transfer probabilities. This should be considered in risk assessments for non-target arthropods.  相似文献   

16.
Inheritance traits of a Cry1Ab-resistant strain of the sugarcane borer, Diatraea saccharalis (F.) were analyzed using various genetic crosses. Reciprocal parental crosses between Cry1Ab-susceptible and Cry1Ab-resistant populations, F1 by F1 crosses, and backcrosses of F1 with the Cry1Ab-resistant population were successfully completed. Larval mortality of the parental and cross-populations were assayed on Cry1Ab diet and Bacillus thuringiensis (Bt)-corn leaf tissue. Maternal effects and sex linkage were examined by comparing the larval mortality between the two F1 populations. Dominance levels of resistance were measured by comparing the larval mortality of the Cry1Ab-resistant, -susceptible, and -heterozygous populations. Number of genes associated with the resistance was evaluated by fitting the observed mortality of F2 and backcross populations with a Mendelian monogenic inheritance model. Cry1Ab resistance in D. saccharalis was likely inherited as a single or a few tightly linked autosomal genes. The resistance was incompletely recessive on Bt corn leaf tissue, while the effective dominance levels (DML) of resistance increased as Cry1Ab concentrations decreased with Cry1Ab-treated diet. DML estimated based on larval mortality on intact Bt corn plants reported in a previous study ranged from 0.08 to 0.26. This variability in DML levels of Cry1Ab resistance in D. saccharalis suggests that Bt corn hybrids must express a sufficient dose of Bt proteins to make the resistance genes functionally recessive. Thus, Bt resistant heterozygous individuals can be killed as desired in the “high/dose refuge” resistance management strategy for Bt corn.  相似文献   

17.
Field-evolved resistance to Bt maize by western corn rootworm   总被引:2,自引:0,他引:2  

Background

Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae).

Methodology/Principal Findings

We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins.

Conclusions/Significance

This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary.  相似文献   

18.
Sugarcane borer, Diatraea saccharalis (F.), is a primary corn stalk borer pest targeted by transgenic corn expressing Bacillus thuringiensis (Bt) proteins in many areas of the mid-southern region of the United States. Recently, genes encoding for Cry1A.105 and Cry2Ab2 Bt proteins were transferred into corn plants (event MON 89034) for controlling lepidopteran pests. This new generation of Bt corn with stacked-genes of Cry1A.105 and Cry2Ab2 will become commercially available in 2009. Susceptibility of Cry1Ab-susceptible and -resistant strains of D. saccharalis were evaluated on four selected Bt proteins including Cry1Aa, Cry1Ac, Cry1A.105, and Cry2Ab2. The Cry1Ab-resistant strain is capable of completing its larval development on commercial Cry1Ab-expressing corn plants. Neonates of D. saccharalis were assayed on a meridic diet containing one of the four Cry proteins. Larval mortality, body weight, and number of surviving larvae that did not gain significant weight (<0.1 mg per larva) were recorded after 7 days. Cry1Aa was the most toxic protein against both insect strains, followed in decreasing potency by Cry1A.105, Cry1Ac, and Cry2Ab2. Using practical mortality (larvae either died or no significant weight gain after 7 days), the median lethal concentration (LC50) of the Cry1Ab-resistant strain was estimated to be >80-, 45-, 4.1-, and −0.5-fold greater than that of the susceptible strain to Cry1Aa, Cry1Ac, Cry1A.105 and Cry2Ab2 proteins, respectively. This information should be useful to support the commercialization of the new Bt corn event MON 89034 for managing D. saccharalis in the mid-southern region of the United States.  相似文献   

19.
In 1996, the Australian cotton industry adopted Ingard that expresses the Bacillus thuringiensis (Bt) toxin gene cry1Ac and was planted at a cap of 30%. In 2004-2005, Bollgard II, which expresses cry1Ac and cry2Ab, replaced Ingard in Australia, and subsequently has made up >80% of the area planted to cotton, Gossypium hirsutum L. The Australian target species Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) are innately moderately tolerant to Bt toxins, but the absence of a history of insecticide resistance indicates that the latter species is less likely to develop resistance to Bt cotton. From 2002-2003 to 2006-2007, F2 screens were deployed to detect resistance to CrylAc or Cry2Ab in natural populations of H. punctigera. Alleles that conferred an advantage against CrylAc were not detected, but those that conferred resistance to Cry2Ab were present at a frequency of 0.0018 (n = 2,192 alleles). Importantly, the first isolation of Cry2Ab resistance in H. punctigera occurred before significant opportunities to develop resistance in response to Bollgard II. We established a colony (designated Hp4-13) consisting of homozygous resistant individuals and examined their characteristics through comparison with individuals from a Bt-susceptible laboratory colony. Through specific crosses and bioassays, we established that the resistance present in Hp4-13 is due to a single autosomal gene. The resistance is fully recessive. Homozygotes are able to survive a dose of Cry2Ab toxin that is 15 times the reported concentration in field grown Bollgard II in Australia (500 microg/ml) and are fully susceptible to Cry1Ac and to the Bt product DiPel. These characteristics are the same as those described for the first Cry2Ab resistant strain of H. armigera isolated from a field population in Australia.  相似文献   

20.
Large quantities of Bacillus thuringiensis (Bt) corn plant residue are left in the field after harvest, which may have implications for the soil ecosystem. Potential impacts on soil organisms will also depend on the persistence of the Bt toxin in plant residues. Therefore, it is important to know how long the toxin persists in plant residues. In two field studies in the temperate corn-growing region of Switzerland we investigated degradation of the Cry1Ab toxin in transgenic Bt corn leaves during autumn, winter and spring using an enzyme-linked immunosorbent assay (ELISA). In the first field trial, representing a tillage system, no degradation of the Cry1Ab toxin was observed during the first month. During the second month, Cry1Ab toxin concentrations decreased to approximately 20% of their initial values. During winter, there was no further degradation. When temperatures again increased in spring, the toxin continued to degrade slowly, but could still be detected in June. In the second field trial, representing a no-tillage system, Cry1Ab toxin concentrations decreased without initial delay as for soil-incorporated Bt plants, to 38% of the initial concentration during the first 40 days. They then continued to decrease until the end of the trial after 200 days in June, when 0.3% of the initial amount of Cry1Ab toxin was detected. Our results suggest that extended pre- and post-commercial monitoring are necessary to assess the long-term impact of Bt toxin in transgenic plant residues on soil organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号