首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acidic fibroblast growth factor (aFGF) is a potent mitogen for many cells. Exogenous aFGF is able to enter the cytosol and nucleus of sensitive cells. There are indications that both activation of the receptor tyrosine kinase and translocation of aFGF to the nucleus are of importance for mitogenesis. However, the mechanism of transport of aFGF from the cell surface to the nucleus is poorly understood. In this work we demonstrate that inhibition of phosphatidylinositol (PI) 3-kinase by chemical inhibitors and by expression of a dominant negative mutant of PI 3-kinase blocks translocation of aFGF to the cytosol and nucleus. Translocation to the cytosol and nucleus was monitored by cell fractionation, by farnesylation of aFGF modified to contain a farnesylation signal, and by phosphorylation by protein kinase C of aFGF added externally to cells. If aFGF is fused to diphtheria toxin A-fragment, it can be artificially translocated from the cell surface to the cytoplasm by the diphtheria toxin pathway. Upon further incubation, the fusion protein enters the nucleus due to a nuclear localization sequence in aFGF. We demonstrate here that upon inhibition of PI 3-kinase the fusion protein remains in the cytosol. We also provide evidence that the phosphorylation status of the fusion protein does not regulate its nucleocytoplasmic distribution.  相似文献   

2.
Phosphatidylcholine (PC) from marine invertebrates is enriched in ether-linked forms. PCs from ray fish, Dasyatis sp., and bivalve, Macoma birmanica, used in the present study, contain 65% and 75% (w/w of total PC) of ether-linked forms, respectively. Ether-linked PCs also occur in mammalian membranes. Agonist-mediated hydrolysis of PC generates second messengers which participate in cellular responses. In this study, we tested whether PCs from marine invertebrates directly affect mammalian cell growth and activity of phosphatidylinositol (PI-3-kinase). PI-3-kinase participates in mitogenesis initiated by a variety of growth factors. PI-3-kinase converts polyphosphoinositides to 3′ phosphorylated isomers and these products accumulate in response to mitogenic stimuli. Whether cell membrane lipids regulate PI-3-kinase activity is not known. The marine animal–derived PCs and dioleoyl DAG (dioleoylglycerol) stimulated growth of murine pre-B lymphocytes, whereas chicken PC (egg lecithin) inhibited growth of these cells. Egg lecithin is also a potent inhibitor of PI-3-kinase activity in vitro. We studied the effect of PCs and DAG on PI-3-kinase activity. Unlike egg lecithin, marine animal PCs enhanced PI-3-kinase activity. We investigated the effect of lipids on PI-3-kinase substrate utilization. PCs enriched in ether-linked species increased utilization of substrates by PI-3-kinase. PCs purified from marine organisms also contain a substantially higher percentage of the cis-unsaturated fatty acids, especially of the ? ω3 series (25% and 30% of total fatty acids for Dasyatis sp. and Macoma birmanica, respectively), as compared to vertebrate sources. In spite of differences in fatty acid composition, marine PCs and dioleoyl DAG showed similar effects on cell growth and PI-3-kinase activity. These findings indicate that ether-linked phospholipids activate PI-3-kinase and may participate in mitogenic responses. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Na(+)-dependent glutamate transporters are the primary mechanism for removal of excitatory amino acids (EAAs) from the extracellular space of the central nervous system and influence both physiologic and pathologic effects of these compounds. Recent evidence suggests that the activity and cell surface expression of a neuronal subtype of glutamate transporter, EAAC1, are rapidly increased by direct activation of protein kinase C and are decreased by wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K). We hypothesized that this regulation could be analogous to insulin-induced stimulation of the GLUT4 subtype of glucose transporter, which is dependent upon activation of PI3-K. Using C6 glioma, a cell line that endogenously and selectively expresses EAAC1, we report that platelet-derived growth factor (PDGF) increased Na(+)-dependent L-[(3)H]-glutamate transport activity within 30 min. This effect of PDGF was not due to a change in total cellular EAAC1 immunoreactivity but was instead correlated with an increase cell surface expression of EAAC1, as measured using a membrane impermeant biotinylation reagent combined with Western blotting. A decrease in nonbiotinylated intracellular EAAC1 was also observed. These studies suggest that PDGF causes a redistribution of EAAC1 from an intracellular compartment to the cell surface. These effects of PDGF were accompanied by a 35-fold increase in PI3-K activity and were blocked by the PI3-K inhibitors, wortmannin and LY 294002, but not by an inhibitor of protein kinase C. Other growth factors, including insulin, nerve growth factor, and epidermal growth factor had no effect on glutamate transport nor did they increase PI3-K activity. These studies suggest that, as is observed for insulin-mediated translocation of GLUT4, EAAC1 cell surface expression can be rapidly increased by PDGF through activation of PI3-K. It is possible that this PDGF-mediated increase in EAAC1 activity may contribute to the previously demonstrated neuroprotective effects of PDGF.  相似文献   

4.
We have examined the interaction of transforming growth factor (TGF)beta receptors with phosphatidylinositol 3-(PI3) kinase in epithelial cells. In COS7 cells, treatment with TGFbeta increased PI3 kinase activity as measured by the ability of p85-associated immune complexes to phosphorylate inositides in vitro. Both type I and type II TGFbeta receptors (TbetaR) associated with p85, but the association of TbetaRII appeared to be constitutive. The interaction of TbetaRI with p85 was induced by treatment with TGFbeta. The receptor association with PI3 kinase was not direct as (35)S-labeled rabbit reticulocyte p85 did not couple with fusion proteins containing type I and type II receptors. A kinase-dead, dominant-negative mutant of TbetaRII blocked ligand-induced p85-TbetaRI association and PI3 kinase activity. In TbetaRI-null R1B cells, TGFbeta did not stimulate PI3 kinase activity. This stimulation was restored upon reconstitution of TbetaRI by transfection. In R1B and NMuMG epithelial cells, overexpression of a dominant active mutant form of TbetaRI markedly enhanced ligand-independent PI3 kinase activity, which was blocked by the addition of the TbetaRI kinase inhibitor LY580276, suggesting a causal link between TbetaRI function and PI3 kinase. Overexpressed Smad7 also prevented ligand-induced PI3 kinase activity. Taken together, these data suggest that 1) TGFbeta receptors can indirectly associate with p85, 2) both receptors are required for ligand-induced PI3 kinase activation, and 3) the activated TbetaRI serine-threonine kinase can potently induce PI3 kinase activity.  相似文献   

5.
The pleiotropic effects (mitogenesis, motogenesis, and morphogenesis) elicited by hepatocyte growth factor/scatter factor (HGF/SF) are mediated by the activation of the tyrosine kinase receptor encoded by the MET proto-oncogene. Following autophosphorylation, the receptor associates with the p85/110 phosphatidylinositol (PI) 3-kinase complex in vivo and in vitro. By a combination of two complementary approaches, competition with synthetic phosphopeptides and association with Tyr-Phe receptor mutants, we have identified Y-1349 and Y-1356 in the HGF/SF receptor as the binding sites for PI 3-kinase. Y-1349VHV and Y-1356VNV do not conform to the canonical consensus sequence YXXM for PI 3-kinase binding and thus define YVXV as a novel recognition motif. Y-1349 and Y-1356 are located within the C-terminal portion of the HGF/SF receptor and are phosphorylation sites. The affinity of the N- and C-terminal src homology region 2 (SH2) domains of p85 for the phosphopeptides including Y-1349 and Y-1356 is 2 orders of magnitude lower than that measured for Y-751 in the platelet-derived growth factor receptor binding site. However, the closely spaced duplication of the novel recognition motif in the native HGF/SF receptor may allow binding with both SH2 domains of p85, thus generating an efficient docking site for PI 3-kinase. In agreement with this model, we have observed that a phosphopeptide including both Y-1349 and Y-1356 activates PI 3-kinase in vitro.  相似文献   

6.
7.
Conflicting results concerning the ability of the epidermal growth factor (EGF) receptor to associate with and/or activate phosphatidylinositol (PtdIns) 3-kinase have been published. Despite the ability of EGF to stimulate the production of PtdIns 3-kinase products and to cause the appearance of PtdIns 3-kinase activity in antiphosphotyrosine immunoprecipitates in several cell lines, we did not detect EGF-stimulated PtdIns 3-kinase activity in anti-EGF receptor immunoprecipitates. This result is consistent with the lack of a phosphorylated Tyr-X-X-Met motif, the p85 Src homology 2 (SH2) domain recognition sequence, in this receptor sequence. The EGF receptor homolog, ErbB2 protein, also lacks this motif. However, the ErbB3 protein has seven repeats of the Tyr-X-X-Met motif in the carboxy-terminal unique domain. Here we show that in A431 cells, which express both the EGF receptor and ErbB3, PtdIns 3-kinase coprecipitates with the ErbB3 protein (p180erbB3) in response to EGF. p180erbB3 is also shown to be tyrosine phosphorylated in response to EGF. In contrast, a different mechanism for the activation of PtdIns 3-kinase in response to EGF occurs in certain cells (PC12 and A549 cells). Thus, we show for the first time that ErbB3 can mediate EGF responses in cells expressing both ErbB3 and the EGF receptor.  相似文献   

8.
We investigated the involvement of phosphatidylinositol 3-kinase (PtdIns 3-kinase) in the initiation of signal transduction by nerve growth factor (NGF) in the rat pheochromocytoma PC12 cell line. PtdIns 3-kinase catalyzes the formation of phosphoinositides with phosphate in the D-3 position of the inositol ring and previously has been found to associate with other activated protein tyrosine kinases, including growth factor receptor tyrosine kinases. Anti-phosphotyrosine immunoprecipitates had PtdIns 3-kinase activity that reached a maximum (9 times the basal activity) after a 5-min exposure of PC12 cells to NGF (100 ng/ml). Since NGF activates the tyrosine kinase activity of gp140trk, the protein product of the trk proto-oncogene, we also examined the association of PtdIns 3-kinase with gp140trk. Anti-gp140trk immunoprecipitates from NGF-stimulated PC12 cells had increased PtdIns 3-kinase activity compared to that of unstimulated cells, and larger increases were detected in cells overexpressing gp140trk, indicating that PtdIns 3-kinase associates with gp140trk. NGF produced large increases in [32P]phosphatidylinositol 3,4-bisphosphate and [32P]phosphatidylinositol 3,4,5-trisphosphate in PC12 cells labeled with [32P]orthophosphate, indicating an increase in PtdIns 3-kinase activity in intact cells. Using an anti-85-kDa PtdIns 3-kinase subunit antibody, we found that NGF promoted the tyrosine phosphorylation of an 85-kDa protein and two proteins close to 110 kDa. These studies demonstrate that NGF activates PtdIns 3-kinase and promotes its association with gp140trk and also show that NGF promotes the tyrosine phosphorylation of the 85-kDa subunit of PtdIns 3-kinase. Thus, PtdIns 3-kinase activation appears to be involved in differentiation as well as mitogenic responses.  相似文献   

9.
10.
We have reported that prostaglandin F2alpha (PGF2alpha) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells. In addition, we recently showed that phosphatidylinositol 3 (PI3)-kinase activated by platelet-derived growth factor-BB (PDGF-BB) negatively regulates the interleukin-6 synthesis in these cells. In the present study, we investigated the effect of PDGF-BB on the PGF2alpha-induced VEGF synthesis in MC3T3-E1 cells. PDGF-BB, which alone did not affect the levels of VEGF, significantly enhanced the PGF2alpha-stimulated VEGF synthesis. The amplifying effect of PDGF-BB was dose dependent in the range between 10 and 70 ng/ml. LY294002 or wortmannin, specific inhibitors of PI3-kinase, which by itself failed to affect the PGF2alpha-stimulated VEGF synthesis, significantly suppressed the amplification by PDGF-BB. PD98059, a specific inhibitor of MEK1/2, suppressed the amplification by PDGF-BB of the PGF2alpha-stimulated VEGF synthesis similar to the levels of PGF2alpha with PD98059. PDGF-BB itself induced the phosphorylation of p44/p42 MAP kinase in these cells, and the effects of PDGF-BB and PGF2alpha on the phosphorylation of p44/p42 MAP kinase were additive. Moreover, LY294002 had little effect on the phosphorylation of p44/p42 MAP kinase induced by PGF2alpha with PDGF-BB. These results strongly suggest that PGF2alpha-stimulated VEGF synthesis is amplified by PI3-kinase-mediating PDGF-BB signaling in osteoblasts, and that the effect is exerted at a point downstream from p44/p42 MAP kinase.  相似文献   

11.
Treatment of HER 14 cells with epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) induced a translocation of phospholipase C-γ (PLC-γ) from cytosol to membrane. In such growth factor-treated cells, cytosolic PLC-γ was found to contain more phosphotyrosine than membrane-associated enzyme. Because these growth factors have been shown to promote both the physical association of PLC-γ with their receptors and the subsequent phosphorylation of the enzyme directly by the membrane-bound receptor tyrosine kinases, the membrane assocation of PLC-γ may simply be due to the formation of transient enzyme (receptor)-substrate (PLC-γ) complexes. If this is the case, membrane-associated PLC-γ would be expected to be released from membrane after undergoing tyrosine phosphorylation. However, tyrosine phosphorylation of membrane-associated PLC-γ by the EGF receptor in vitro did not result in the release of PLC-γ from membrane. Thus, the association of PLC-γ with membrane would appear to involve more than enzyme-substrate complex.  相似文献   

12.
Previous studies have suggested that the two subunits of phosphatidylinositol (PI) 3-kinase, p85 and p110, function as localizing and catalytic subunits, respectively. Using recombinant p85 and p110 molecules, we have reconstituted the specific interaction between the two subunits of mouse PI 3-kinase in cells and in vitro. We have previously shown that the region between the two Src homology 2 (SH2) domains of p85 is able to form a functional complex with the 110-kDa subunit in vivo. In this report, we identify the corresponding domain in p110 which directs the binding to p85. We demonstrate that the interactive domains in p85 and p110 are less than 103 and 124 amino acids, respectively, in size. We also show that the association of p85 and p110 mediated by these domains is critical for PI 3-kinase activity. Surprisingly, a complex between a 102-amino-acid segment of p85 and the full-length p110 molecule is catalytically active, whereas p110 alone has no activity. In addition to the catalytic domain in the carboxy-terminal region, 123 amino acids at the amino terminus of p110 were required for catalytic activity and were sufficient for the interaction with p85. These results indicate that the 85-kDa subunit, previously thought to have only a linking role in localizing the p110 catalytic subunit, is an important component of the catalytic complex.  相似文献   

13.
Upon binding of platelet-derived growth factor (PDGF), the PDGF beta receptor (PDGFR) undergoes autophosphorylation on distinct tyrosine residues and binds several SH2-domain-containing signal relay enzymes, including phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein of Ras (RasGAP), and the tyrosine phosphatase SHP-2. In this study, we have investigated whether PDGF-dependent PI3K activation is affected by the other proteins that associate with the PDGFR. We constructed and characterized a series of PDGFR mutants which contain binding sites for PI3K as well as one additional protein, either RasGAP, SHP-2, or PLC gamma. While all of the receptors had wild-type levels of PDGF-stimulated tyrosine kinase activity and associated with comparable amounts of PI3K activity, their abilities to trigger accumulation of PI3K products in vivo differed dramatically. The wild-type receptor, as well as receptors that recruited PI3K or PI3K and SHP-2, were all capable of fully activating PI3K. In contrast, receptors that associated with PI3K and RasGAP or PI3K and PLC gamma displayed a greatly reduced ability to stimulate production of PI3K products. When this series of receptors was tested for their ability to activate Ras, we observed a strong positive correlation between Ras activation and PI3K activation. Further investigation of the relationship between Ras and PI3K indicated that Ras was upstream of PI3K. Thus, activation of PI3K requires not only binding of PI3K to the tyrosine-phosphorylated PDGFR but accumulation of GTP-bound Ras as well. Furthermore, PLC gamma and RasGAP negatively modulate PDGF-dependent PI3K activation. Finally, PDGF-stimulated signal relay can be regulated by altering the ratio of SH2-domain-containing enzymes that are recruited to the PDGFR.  相似文献   

14.
A series of pieces of evidence have shown that Ras protein acts as a transducer of the platelet-derived growth factor (PDGF) receptor-mediated signaling pathway: (i) formation of Ras.GTP is detected immediately on PDGF stimulation, and (ii) a dominant inhibitory mutant Ras, as well as a neutralizing anti-Ras antibody, can interfere with PDGF-induced responses. On the other hand, several signal transducing molecules including phosphatidylinositol 3-kinase (PI3-K), GTPase-activating protein (GAP), and phospholipase C gamma (PLC gamma) bind directly to the PDGF receptor and become tyrosine phosphorylated. Recently, it was shown that specific phosphorylated tyrosines of the PDGF receptor are responsible for interaction between the receptor and each signaling molecule. However, the roles of these signaling molecules have not been elucidated, and it remains unclear which molecules are implicated in the Ras pathway. In this study, we measured Ras activation in cell lines expressing mutant PDGF receptors that are deficient in coupling with specific molecules. In fibroblast CHO cells, a mutant receptor (Y708F/Y719F [PI3-K-binding sites]) was unable to stimulate Ras, whereas another mutant (Y739F [the GAP-binding site]) could do so, suggesting an indispensable role of PI3-K or a protein that binds to the same sites as PI3-K for PDGF-stimulated Ras activation. By contrast, both of the above mutants were capable of stimulating Ras protein in a pro-B-cell line, BaF3. Furthermore, a mutant receptor (Y977F/Y989F [PLC gamma-binding sites]) could fully activate Ras, and the direct activation of protein kinase C and calcium mobilization had almost no effect on the GDP/GTP state of Ras in this cell line. These results suggest that, in the pro-B-cell transfectants, each of the above pathways (PI3-K, GAP, and PLC gamma) can be eliminated without a loss of Ras activation. It remains unclear whether another unknown essential pathway which regulates Ras protein exists within BaF3 cells. Therefore, it is likely that several different PDGF receptor-mediated signaling pathways function upstream of Ras, and the extent of the contribution of each pathway for the regulation of Ras may differ among different cell types.  相似文献   

15.
beta-arrestins (1 and 2) are widely expressed cytosolic proteins that play central roles in G protein-coupled receptor signaling. beta-arrestin1 is also recruited to the insulin-like growth factor 1 (IGF-1) receptor, a receptor tyrosine kinase, upon agonist binding. Here we report that, in response to IGF-1 stimulation, beta-arrestin1 mediates activation of phosphatidylinositol 3-kinase in a pathway that leads to the subsequent activation of Akt and anti-apoptosis. This process is independent of both Gi and ERK activity. The pathway fails in mouse embryo fibroblasts lacking both beta-arrestins and is restored by stable transfection of beta-arrestin1. Remarkably, this pathway is insensitive to chemical inhibition of IGF-1 receptor tyrosine kinase activity. These results suggest that, in addition to their roles in G protein-coupled receptor signaling, beta-arrestins couple the IGF-1 receptor tyrosine kinase to the phosphatidylinositol 3-kinase system and suggest that this mechanism is operative independently of the tyrosine kinase activity of the receptor.  相似文献   

16.
Cyclic AMP response element binding protein (CREB) content is diminished in smooth muscle cells (SMCs) in remodeled pulmonary arteries from animals with pulmonary hypertension and in the SMC layers of atherogenic systemic arteries and cardiomyocytes from hypertensive individuals. Loss of CREB can be induced in cultured SMCs by chronic exposure to hypoxia or platelet-derived growth factor BB (PDGF-BB). Here we investigated the signaling pathways and mechanisms by which PDGF elicits depletion of SMC CREB. Chronic PDGF treatment increased CREB ubiquitination in SMCs, while treatment of SMCs with the proteasome inhibitor lactacystin prevented decreases in CREB content. The nuclear export inhibitor leptomycin B also prevented depletion of SMC CREB alone or in combination with lactacystin. Subsequent studies showed that PDGF activated extracellular signal-regulated kinase, Jun N-terminal protein kinase, and phosphatidylinositol 3 (PI3)-kinase pathways in SMCs. Inhibition of these pathways blocked SMC proliferation in response to PDGF, but only inhibition of PI3-kinase or its effector, Akt, blocked PDGF-induced CREB loss. Finally, chimeric proteins containing enhanced cyan fluorescent protein linked to wild-type CREB or CREB molecules with mutations in several recognized phosphorylation sites were introduced into SMCs. PDGF treatment reduced the levels of each of these chimeric proteins except for one containing mutations in adjacent serine residues (serines 103 and 107), suggesting that CREB loss was dependent on CREB phosphorylation at these sites. We conclude that PDGF stimulates nuclear export and proteasomal degradation of CREB in SMCs via PI3-kinase/Akt signaling. These results indicate that in addition to direct phosphorylation, proteolysis and intracellular localization are key mechanisms regulating CREB content and activity in SMCs.  相似文献   

17.
Autophosphorylation of the platelet-derived growth factor (PDGF) receptor triggers intracellular signaling cascades as a result of recruitment of Src homology 2 domain-containing enzymes, including phosphatidylinositol 3-kinase (PI3K), the GTPase-activating protein of Ras (GAP), the protein-tyrosine phosphatase SHP-2, and phospholipase C-gamma1 (PLC-gamma1), to specific phosphotyrosine residues. The roles of these various effectors in PDGF-induced generation of H(2)O(2) have now been investigated in HepG2 cells expressing various PDGF receptor mutants. These mutants included a kinase-deficient receptor and receptors in which various combinations of the tyrosine residues required for the binding of PI3K (Tyr(740) and Tyr(751)), GAP (Tyr(771)), SHP-2 (Tyr(1009)), or PLC-gamma1 (Tyr(1021)) were mutated to Phe. PDGF failed to increase H(2)O(2) production in cells expressing either the kinase-deficient mutant or a receptor in which the two Tyr residues required for the binding of PI3K were replaced by Phe. In contrast, PDGF-induced H(2)O(2) production in cells expressing a receptor in which the binding sites for GAP, SHP-2, and PLC-gamma1 were all mutated was slightly greater than that in cells expressing the wild-type receptor. Only the PI3K binding site was alone sufficient for PDGF-induced H(2)O(2) production. The effect of PDGF on H(2)O(2) generation was blocked by the PI3K inhibitors LY294002 and wortmannin or by overexpression of a dominant negative mutant of Rac1. These results suggest that a product of PI3K is required for PDGF-induced production of H(2)O(2) in nonphagocytic cells, and that Rac1 mediates signaling between the PI3K product and the putative NADPH oxidase.  相似文献   

18.
We have found that insulin-like growth factor I (IGF-I) can protect fibroblasts from apoptosis induced by UV-B light. Antiapoptotic signalling by the IGF-I receptor depended on receptor kinase activity, as cells overexpressing kinase-defective receptor mutants could not be protected by IGF-I. Overexpression of a kinase-defective receptor which contained a mutation in the ATP binding loop functioned as a dominant negative and sensitized cells to apoptosis. The antiapoptotic capacity of the IGF-I receptor was not shared by other growth factors tested, including epidermal growth factor (EGF) and thrombin, although the cells expressed functional receptors for all the agonists. However, EGF was antiapoptotic for cells overexpressing the EGF receptor, and expression of activated pp60v-src also was protective. There was no correlation between protection from apoptosis and activation of mitogen-activated protein kinase, p38/HOG1, or p70S6 kinase. On the other hand, protection by any of the tyrosine kinases against UV-induced apoptosis was blocked by wortmannin, implying a role for phosphatidylinositol 3-kinase (PI3 kinase). To test this, we transiently expressed constitutively active or kinase-dead PI3 kinase and found that overexpression of activated phosphatidylinositol 3-kinase (PI3 kinase) was sufficient to provide protection against apoptosis. Because Akt/PKB is believed to be a downstream effector for PI3 kinase, we also examined the role of this serine/threonine protein kinase in antiapoptotic signalling. We found that membrane-targeted Akt was sufficient to protect against apoptosis but that kinase-dead Akt was not. We conclude that the endogenous IGF-I receptor has a specific antiapoptotic signalling capacity, that overexpression of other tyrosine kinases can allow them also to be antiapoptotic, and that activation of PI3 kinase and Akt is sufficient for antiapoptotic signalling.  相似文献   

19.
Phosphatidylinositol (PI) 3-kinase is a cytoplasmic signaling molecule that is recruited to activated growth factor receptors after growth factor stimulation of cells. Activation of PI 3-kinase results in increased intracellular levels of 3' phosphorylated inositol phospholipids and the induction of signaling responses, including the activation of the protein kinase Akt, which is also known as RAC-PK or PKB. We tested the possibility that the phospholipid products of PI 3-kinase directly mediate the activation of Akt. We have previously described a constitutively active PI 3-kinase, p110, which can stimulate Akt activity. We used purified p110 protein to generate a series of 3' phosphorylated inositol phospholipids and tested whether any of these lipids could activate Akt in vitro. Phospholipid vesicles containing PI3,4 bisphosphate (P2) specifically activated Akt in vitro. By contrast, the presence of phospholipid vesicles containing PI3P or PI3,4,5P3 failed to increase the kinase activity of Akt. Akt could also be activated by synthetic dipalmitoylated PI3,4P2 or after enzymatic conversion of PI3,4,5P3 into PI3,4P2 with the signaling inositol polyphosphate 5' phosphatase SIP. We show that PI3,4P2-mediated activation is dependent on a functional pleckstrin homology domain in Akt, since a point mutation in the pleckstrin homology domain abrogated the response to PI3,4P2. Our findings show that a phospholipid product of PI 3-kinase can directly stimulate an enzyme known to be an important mediator of PI 3-kinase signaling.  相似文献   

20.
We and others have previously demonstrated the existence of an autonomous nuclear polyphosphoinositide cycle that generates second messengers such as diacylglycerol (DAG), capable of attracting to the nucleus specific protein kinase C (PKC) isoforms (Neri et al. (1998) J. Biol. Chem. 273, 29738-29744). Recently, however, nuclei have also been shown to contain the enzymes responsible for the synthesis of the non-canonical 3-phosphorylated inositides. To clarify a possible role of this peculiar class of inositol lipids we have examined the question of whether nerve growth factor (NGF) induces PKC-zeta nuclear translocation in PC12 cells and whether this translocation is dependent on nuclear phosphatidylinositol 3-kinase (PI 3-K) activity and its product, phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P(3)]. NGF increased both the amount and the enzyme activity of immunoprecipitable PI 3-K in PC12 cell nuclei. Activation of the enzyme, but not its translocation, was blocked by PI 3-K inhibitors wortmannin and LY294002. Treatment of PC12 cells for 9 min with NGF led to an increase in the nuclear levels of PtdIns(3,4,5)P(3). Maximal translocation of PKC-zeta from the cytoplasm to the nucleus (as evaluated by immunoblotting, enzyme activity, and confocal microscopy) occurred after 12 min of exposure to NGF and was completely abrogated by either wortmannin or LY294002. In contrast, these two inhibitors did not block nuclear translocation of the conventional, DAG-sensitive, PKC-alpha. On the other hand, the specific phosphatidylinositol phospholipase C inhibitor, 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine, was unable to abrogate nuclear translocation of the DAG-insensitive PKC-zeta. These data suggest that a nuclear increase in PI 3-K activity and PtdIns(3,4,5)P(3) production are necessary for the subsequent nuclear translocation of PKC-zeta. Furthermore, they point to the likelihood that PKC-zeta is a putative nuclear downstream target of PI 3-K during NGF-promoted neural differentiation.-Neri, L. M., Martelli, A. M., Borgatti, P., Colamussi, M. L., Marchisio, M., Capitani, S. Increase in nuclear phosphatidylinositol 3-kinase activity and phosphatidylinositol (3,4, 5) trisphosphate synthesis precede PKC-zeta translocation to the nucleus of NGF-treated PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号