首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Many types of differentiated eukaryotic cells display microtubule distributions consistent with nucleation from noncentrosomal intracellular microtubule organizing centers (MTOCs), although such structures remain poorly characterized. In fission yeast, two types of MTOCs exist in addition to the spindle pole body, the yeast centrosome equivalent. These are the equatorial MTOC, which nucleates microtubules from the cell division site at the end of mitosis, and interphase MTOCs, which nucleate microtubules from multiple sites near the cell nucleus during interphase. RESULTS: From an insertional mutagenesis screen we identified a novel gene, mod20+, which is required for microtubule nucleation from non-spindle pole body MTOCs in fission yeast. Mod20p is not required for intranuclear mitotic spindle assembly, although it is required for cytoplasmic astral microtubule growth during mitosis. Mod20p localizes to MTOCs throughout the cell cycle and is also dynamically distributed along microtubules themselves. We find that mod20p is required for the localization of components of the gamma-tubulin complex to non-spindle pole body MTOCs and physically interacts with the gamma-tubulin complex in vivo. Database searches reveal a family of eukaryotic proteins distantly related to mod20p; these are found in organisms ranging from fungi to mammals and include Drosophila centrosomin. CONCLUSIONS: Mod20p appears to act by recruiting components of the gamma-tubulin complex to non-spindle pole body MTOCs. The identification of mod20p-related proteins in higher eukaryotes suggests that this may represent a general mechanism for the organization of noncentrosomal MTOCs in eukaryotic cells.  相似文献   

2.
In mouse oocytes, acentriolar MTOCs functionally replace centrosomes and act as microtubule nucleation sites. Microtubules nucleated from MTOCs initially assemble into an unorganized ball‐like structure, which then transforms into a bipolar spindle carrying MTOCs at its poles, a process called spindle bipolarization. In mouse oocytes, spindle bipolarization is promoted by kinetochores but the mechanism by which kinetochore–microtubule attachments contribute to spindle bipolarity remains unclear. This study demonstrates that the stability of kinetochore–microtubule attachment is essential for confining MTOC positions at the spindle poles and for limiting spindle elongation. MTOC sorting is gradual and continues even in the metaphase spindle. When stable kinetochore–microtubule attachments are disrupted, the spindle is unable to restrict MTOCs at its poles and fails to terminate its elongation. Stable kinetochore fibers are directly connected to MTOCs and to the spindle poles. These findings suggest a role for stable kinetochore–microtubule attachments in fine‐tuning acentrosomal spindle bipolarity.  相似文献   

3.
Microtubules regulate diverse cellular processes, including chromosome segregation, nuclear positioning, and cytokinesis. In many organisms, microtubule nucleation requires gamma-tubulin and associated proteins present at specific microtubule organizing centers (MTOCs). In fission yeast, interphase cytoplasmic microtubules originate from poorly characterized interphase MTOCs and spindle pole body (SPB), and during late anaphase from the equatorial MTOC (EMTOC). It has been previously shown that Mto1p (Mbo1p/Mod20p) function is important for the organization/nucleation of all cytoplasmic microtubules. Here, we show that Mto2p, a novel protein, interacts with Mto1p and is important for establishing a normal interphase cytoplasmic microtubule array. In addition, mto2Delta cells fail to establish a stable EMTOC and localize gamma-tubulin complex members to this medial structure. As predicted from these functions, Mto2p localizes to microtubules, the SPB, and the EMTOC in an Mto1p-dependent manner. mto2Delta cells fail to anchor the cytokinetic actin ring in the medial region of the cell and under conditions that mildly perturb actin structures, these rings unravel in mto2Delta cells. Our results suggest that the Mto2p and the EMTOC are critical for anchoring the cytokinetic actin ring to the medial region of the cell and for proper coordination of mitosis with cytokinesis.  相似文献   

4.
Regulation of microtubule organizing centers (MTOCs) orchestrates the reorganization of the microtubule (MT) cytoskeleton. In the fission yeast Schizosaccharomyces pombe, an equatorial MTOC (eMTOC) at the cell division site disassembles after cytokinesis, and multiple interphase MTOCs (iMTOCs) appear on the nucleus. Here, we show that, upon eMTOC disassembly, small satellites carrying MTOC components such as the gamma-tubulin complex travel in both directions along interphase MTs. We identify rsp1p, an MTOC protein required for eMTOC disassembly. In rsp1 loss-of-function mutants, the eMTOC persists and organizes an abnormal microtubule aster, while iMTOCs and satellites are greatly reduced. Conversely, rsp1p overexpression inhibits eMTOC formation. Rsp1p is a J domain protein that interacts with an hsp70. Thus, our findings suggest a model in which rsp1p is part of a chaperone-based mechanism that disassembles the eMTOC into satellites, contributing to the dynamic redistribution of MTOC components for organization of interphase microtubules.  相似文献   

5.
From an insertional mutagenesis screen, we isolated a novel gene, mto2+, involved in microtubule organization in fission yeast. mto2Delta strains are viable but exhibit defects in interphase microtubule nucleation and in formation of the postanaphase microtubule array at the end of mitosis. The mto2Delta defects represent a subset of the defects displayed by cells deleted for mto1+ (also known as mod20+ and mbo1+), a centrosomin-related protein required to recruit the gamma-tubulin complex to cytoplasmic microtubule-organizing centers (MTOCs). We show that mto2p colocalizes with mto1p at MTOCs throughout the cell cycle and that mto1p and mto2p coimmunoprecipitate from cytoplasmic extracts. In vitro studies suggest that mto2p binds directly to mto1p. In mto2Delta mutants, although some aspects of mto1p localization are perturbed, mto1p can still localize to spindle pole bodies and the cell division site and to "satellite" particles on interphase microtubules. In mto1Delta mutants, localization of mto2p to all of these MTOCs is strongly reduced or absent. We also find that in mto2Delta mutants, cytoplasmic forms of the gamma-tubulin complex are mislocalized, and the gamma-tubulin complex no longer coimmunoprecipitates with mto1p from cell extracts. These experiments establish mto2p as a major regulator of mto1p-mediated microtubule nucleation by the gamma-tubulin complex.  相似文献   

6.
Self-organization of cellular structures is an emerging principle underlying cellular architecture. Properties of dynamic microtubules and microtubule-binding proteins contribute to the self-assembly of structures such as microtubule asters. In the fission yeast Schizosaccharomyces pombe, longitudinal arrays of cytoplasmic microtubule bundles regulate cell polarity and nuclear positioning. These bundles are thought to be organized from the nucleus at multiple interphase microtubule organizing centres (iMTOCs). Here, we find that microtubule bundles assemble even in cells that lack a nucleus. These bundles have normal organization, dynamics and orientation, and exhibit anti-parallel overlaps in the middle of the cell. The mechanisms that are responsible for formation of these microtubule bundles include cytoplasmic microtubule nucleation, microtubule release from the equatorial MTOC (eMTOC), and the dynamic fusion and splitting of microtubule bundles. Bundle formation and organization are dependent on mto1p (gamma-TUC associated protein), ase1p (PRC1), klp2p (kinesin-14) and tip1p (CLIP-170). Positioning of nuclear fragments and polarity factors by these microtubules illustrates how self-organization of these bundles contributes to establishing global spatial order.  相似文献   

7.
In eukaryotic cells a specialized organelle called the microtubule organizing center (MTOC) is responsible for disposition of microtubules in a radial, polarized array in interphase cells and in the spindle in mitotic cells. Eukaryotic cells across different species, and different cell types within single species, have morphologically diverse MTOCs, but these share a common function of organizing microtubule arrays. MTOCs effect microtubule organization by initiating microtubule assembly and anchoring microtubules by their slowly growing minus ends, thus ensuring that the rapidly growing plus ends extend distally in each microtubule array. The goal is to define molecular components of the MTOC responsible for regulating microtubule assembly. One approach to defining the molecules responsible for MTOC function is to look for molecules common to all MTOCs. A newly discovered centrosomal protein, γ-tubulin, is found in MTOCs in cells from many different organisms, and has several properties which make it a candidate for both initiation of microtubule assembly and anchorage. The hypothesis that γ-tubulin plays a role in MTOCs in microtubule initiation and anchorage is currently being tested by a variety of experimental approaches.  相似文献   

8.
kar9 was originally identified as a bilateral karyogamy mutant, in which the two zygotic nuclei remained widely separated and the cytoplasmic microtubules were misoriented (Kurihara, L.J., C.T. Beh, M. Latterich, R. Schekman, and M.D. Rose. 1994. J. Cell Biol. 126:911–923.). We now report a general defect in nuclear migration and microtubule orientation in kar9 mutants. KAR9 encodes a novel 74-kD protein that is not essential for life. The kar9 mitotic defect was similar to mutations in dhc1/dyn1 (dynein heavy chain gene), jnm1, and act5. kar9Δ dhc1Δ, kar9Δ jnm1Δ, and kar9Δ act5Δ double mutants were synthetically lethal, suggesting that these genes function in partially redundant pathways to carry out nuclear migration. A functional GFP-Kar9p fusion protein localized to a single dot at the tip of the shmoo projection. In mitotic cells, GFP-Kar9p localized to a cortical dot with both mother–daughter asymmetry and cell cycle dependence. In small-budded cells through anaphase, GFP-Kar9p was found at the tip of the growing bud. In telophase and G1 unbudded cells, no localization was observed. By indirect immunofluorescence, cytoplasmic microtubules intersected the GFP-Kar9p dot. Nocodazole experiments demonstrated that Kar9p's cortical localization was microtubule independent. We propose that Kar9p is a component of a cortical adaptor complex that orients cytoplasmic microtubules.  相似文献   

9.
Centrosome duplication and separation are of central importance for cell division. Here we provide a detailed account of this dynamic process in Dictyostelium. Centrosome behavior was monitored in living cells using a γ-tubulin–green fluorescent protein construct and correlated with morphological changes at the ultrastructural level. All aspects of the duplication and separation process of this centrosome are unusual when compared with, e.g., vertebrate cells. In interphase the Dictyostelium centrosome is a box-shaped structure comprised of three major layers, surrounded by an amorphous corona from which microtubules emerge. Structural duplication takes place during prophase, as opposed to G1/S in vertebrate cells. The three layers of the box-shaped core structure increase in size. The surrounding corona is lost, an event accompanied by a decrease in signal intensity of γ-tubulin–green fluorescent protein at the centrosome and the breakdown of the interphase microtubule system. At the prophase/prometaphase transition the separation into two mitotic centrosomes takes place via an intriguing lengthwise splitting process where the two outer layers of the prophase centrosome peel away from each other and become the mitotic centrosomes. Spindle microtubules are now nucleated from surfaces that previously were buried inside the interphase centrosome. Finally, at the end of telophase, the mitotic centrosomes fold in such a way that the microtubule-nucleating surface remains on the outside of the organelle. Thus in each cell cycle the centrosome undergoes an apparent inside-out/outside-in reversal of its layered structure.  相似文献   

10.
Growth of most eukaryotic cells requires directed transport along microtubules (MTs) that are nucleated at nuclear-associated microtubule organizing centers (MTOCs), such as the centrosome and the fungal spindle pole body (SPB). Herein, we show that the pathogenic fungus Ustilago maydis uses different MT nucleation sites to rearrange MTs during the cell cycle. In vivo observation of green fluorescent protein-MTs and MT plus-ends, tagged by a fluorescent EB1 homologue, provided evidence for antipolar MT orientation and dispersed cytoplasmic MT nucleating centers in unbudded cells. On budding gamma-tubulin containing MTOCs formed at the bud neck, and MTs reorganized with >85% of all minus-ends being focused toward the growth region. Experimentally induced lateral budding resulted in MTs that curved out of the bud, again supporting the notion that polar growth requires polar MT nucleation. Depletion or overexpression of Tub2, the gamma-tubulin from U. maydis, affected MT number in interphase cells. The SPB was inactive in G2 phase but continuously recruited gamma-tubulin until it started to nucleate mitotic MTs. Taken together, our data suggest that MT reorganization in U. maydis depends on cell cycle-specific nucleation at dispersed cytoplasmic sites, at a polar MTOC and the SPB.  相似文献   

11.
Microtubules are essential for a variety of fundamental cellular processes such as organelle positioning and control of cell shape. Schizosaccharomyces pombe is an ideal organism for studying the function and organization of microtubules into bundles in interphase cells. Using light microscopy and electron tomography we analyzed the bundle organization of interphase microtubules in S. pombe. We show that cells lacking ase1p and klp2p still contain microtubule bundles. In addition, we show that ase1p is the major determinant of inter-microtubule spacing in interphase bundles since ase1 deleted cells have an inter-microtubule spacing that differs from that observed in wild-type cells. We then identified dis1p, a XMAP215 homologue, as factor that promotes the stabilization of microtubule bundles. In wild-type cells dis1p partially co-localized with ase1p at regions of microtubule overlap. In cells deleted for ase1 and klp2, dis1p accumulated at the overlap regions of interphase microtubule bundles. In cells lacking all three proteins, both microtubule bundling and inter-microtubule spacing were further reduced, suggesting that Dis1p contributes to interphase microtubule bundling.  相似文献   

12.
Microtubule organization is key to eukaryotic cell structure and function. In most animal cells, interphase microtubules organize around the centrosome, the major microtubule organizing centre (MTOC). Interphase microtubules can also become organized independently of a centrosome, but how acentrosomal microtubules arrays form and whether they are functionally equivalent to centrosomal arrays remains poorly understood. Here, we show that the interphase microtubule arrays of fission yeast cells can persist independently of nuclear-associated MTOCs, including the spindle pole body (SPB)--the centrosomal equivalent. By artificially enucleating cells, we show that arrays can form de novo (self-organize) without nuclear-associated MTOCs, but require the microtubule nucleator mod20-mbo1-mto1 (refs 3-5), the bundling factor ase1 (refs 6,7), and the kinesin klp2 (refs 8,9). Microtubule arrays in enucleated and nucleated cells are morphologically indistinguishable and similarly locate to the cellular axis and centre. By simultaneously tracking nuclear-independent and SPB-associated microtubule arrays within individual nucleated cells, we show that both define the cell centre with comparable precision. We propose that in fission yeast, nuclear-independent, self-organized, acentrosomal microtubule arrays are structurally and functionally equivalent to centrosomal arrays.  相似文献   

13.
The roles of two kinesin-related proteins, Kip2p and Kip3p, in microtubule function and nuclear migration were investigated. Deletion of either gene resulted in nuclear migration defects similar to those described for dynein and kar9 mutants. By indirect immunofluorescence, the cytoplasmic microtubules in kip2Δwere consistently short or absent throughout the cell cycle. In contrast, in kip3Δ strains, the cytoplasmic microtubules were significantly longer than wild type at telophase. Furthermore, in the kip3Δ cells with nuclear positioning defects, the cytoplasmic microtubules were misoriented and failed to extend into the bud. Localization studies found Kip2p exclusively on cytoplasmic microtubules throughout the cell cycle, whereas GFP-Kip3p localized to both spindle and cytoplasmic microtubules. Genetic analysis demonstrated that the kip2Δ kar9Δ double mutants were synthetically lethal, whereas kip3Δ kar9Δ double mutants were viable. Conversely, kip3Δ dhc1Δ double mutants were synthetically lethal, whereas kip2Δ dhc1Δ double mutants were viable. We suggest that the kinesin-related proteins, Kip2p and Kip3p, function in nuclear migration and that they do so by different mechanisms. We propose that Kip2p stabilizes microtubules and is required as part of the dynein-mediated pathway in nuclear migration. Furthermore, we propose that Kip3p functions, in part, by depolymerizing microtubules and is required for the Kar9p-dependent orientation of the cytoplasmic microtubules.  相似文献   

14.
Microtubule nucleation by the γ-tubulin complex occurs primarily at centrosomes, but more diverse types of microtubule organizing centers (MTOCs) also exist, especially in differentiated cells. Mechanisms generating MTOC diversity are poorly understood. Fission yeast Schizosaccharomyces pombe has multiple types of cytoplasmic MTOCs, and these vary through the cell cycle. Cytoplasmic microtubule nucleation in fission yeast depends on a complex of proteins Mto1 and Mto2 (Mto1/2), which localizes to MTOCs and interacts with the γ-tubulin complex. Localization of Mto1 to prospective MTOC sites has been proposed as a key step in γ-tubulin complex recruitment and MTOC formation, but how Mto1 localizes to such sites has not been investigated. Here we identify a short conserved C-terminal sequence in Mto1, termed MASC, important for targeting Mto1 to multiple distinct MTOCs. Different subregions of MASC target Mto1 to different MTOCs, and multimerization of MASC is important for efficient targeting. Mto1 targeting to the cell equator during division depends on direct interaction with unconventional type II myosin Myp2. Targeting to the spindle pole body during mitosis depends on Sid4 and Cdc11, components of the septation initiation network (SIN), but not on other SIN components.  相似文献   

15.
In most kinds of animal cells, the centrosome serves as the main microtubule organizing center (MTOC) that nucleates microtubule arrays throughout the cytoplasm to maintain cell structure, cell division and intracellular transport. Whereas in epithelial cells, non-centrosomal MTOCs are established in the apical domain for generating asymmetric microtubule fibers and cilia in epithelial cells for the organ morphogenesis during embryonic development. However, the mechanism by which MTOCs localize to the apical domain in epithelial cells remains largely unknown. Here, we show that Mid1ip1b has a close interaction with γ-tubulin protein, the central component of MTOC, and modulates lumen opening of the neural tube, gut, intestine, and kidney of zebrafish. Knockdown or dominant negative effect of Mid1ip1b resulted in failure of lumen formation of the organs as aforementioned. Moreover, the non-centrosomal MTOCs were unable to orientate to the apical domain in Mid1ip1b knockdown epithelial cells, and the centrosomal MTOCs were inaccurately placed in the apical domain, resulting in defective formation of asymmetric microtubules and misplacement of cilia in the apical domain. These data uncover a molecule that controls the proper localization of MTOCs in the apical domain in epithelial cells for organ morphogenesis during embryonic development.  相似文献   

16.
The number, distribution, and nucleating capacity of microtubule- organizing centers (MTOCs) has been investigated in a variety of cultured mammalian cells. Most interphase cells contain a single MTOC that is localized at the centrosome region and corresponds to the centriole and pericentriolar material. MTOCs, like centrioles, become duplicated during the S phase of the cell cycle and are equationally distributed to daughter cells in mitosis. Multiple MTOCs were rarely observed in cultured cells except in one cell line (neuroblastoma), which also displayed an equally large number of centrioles in the cytoplasm. The kinetics of microtubule assembly and the tubulin nucleating capacity of MTOCs was assayed by incubating tubulin- depleted, permeabilized 3T3 and simian virus 40-transformed 3T3 cells with phosphocellulose-purified 65 brain tubulin and microtubule assembly buffer. Initiation and assembly of 65 tubulin occurred in association with the cells' endogenous MTOCs, and the length, number, and distribution of microtubules generated about the organizing centers were regulated and cell specific. Our results are consistent with the notion that the specification of microtubule length, number, and spatial arrangement resides largely in the MTOCs and surrounding cytoplasm and not in the tubulin subunits.  相似文献   

17.
The microtubule cytoskeleton is critically important for spatio-temporal organization of eukaryotic cells. The nucleation of new microtubules is typically restricted to microtubule organizing centers (MTOCs) and requires γ-tubulin that assembles into multisubunit complexes of various sizes. γ-Tubulin ring complexes (TuRCs) are efficient microtubule nucleators and are associated with large number of targeting, activating and modulating proteins. γ-Tubulin-dependent nucleation of microtubules occurs both from canonical MTOCs, such as spindle pole bodies and centrosomes, and additional sites such as Golgi apparatus, nuclear envelope, plasma membrane-associated sites, chromatin and surface of pre-existing microtubules. Despite many advances in structure of γ-tubulin complexes and characterization of γTuRC interacting factors, regulatory mechanisms of microtubule nucleation are not fully understood. Here, we review recent work on the factors and regulatory mechanisms that are involved in centrosomal and non-centrosomal microtubule nucleation.  相似文献   

18.
Changes in cellular microtubule organization often accompany developmental progression. In the Caenorhabditis elegans embryo, the centrosome, which is attached to the nucleus via ZYG-12, organizes the microtubule network. In this study, we investigate ZYG-12 function and microtubule organization before embryo formation in the gonad. Surprisingly, ZYG-12 is dispensable for centrosome attachment in the germline. However, ZYG-12–mediated recruitment of dynein to the nuclear envelope is required to maintain microtubule organization, membrane architecture, and nuclear positioning within the syncytial gonad. We examined γ-tubulin localization and microtubule regrowth after depolymerization to identify sites of nucleation in germ cells. γ-Tubulin localizes to the plasma membrane in addition to the centrosome, and regrowth initiates at both sites. Because we do not observe organized microtubules around zyg-12(ct350) mutant nuclei with attached centrosomes, we propose that gonad architecture, including membrane and nuclear positioning, is determined by microtubule nucleation at the plasma membrane combined with tension on the microtubules by dynein anchored at the nucleus by ZYG-12.  相似文献   

19.
R. C. Brown  B. E. Lemmon 《Protoplasma》1989,152(2-3):136-147
Summary The large megasporocytes ofIsoetes provide an exceptional system for studying microtubule dynamics in monoplastidic meiosis where plastid polarity assures coordination of plastid and nuclear division by the intimate association of MTOCs with plastids. Division and migration of the plastid in prophase establishes the tetrahedrally arranged cytoplasmic domains of the future spore tetrad and the four plastid-MTOCs serve as focal points of a unique quadripolar microtubule system (QMS). The QMS is a dynamic structure which functions in plastid deployment and contributes directly to development of both first and second division spindles. The nucleation of microtubules at discrete plastid-MTOCs is compared with centrosomal nucleation of microtubules in animal cells where growth of microtubules involves dynamic instability.Abbreviations AMS axial microtubule system - MTOC microtubule organizing center - N nucleus - QMS quadripolar microtubule system - P plastid - PPB preprophase band of microtubules  相似文献   

20.
The γ-tubulin complex acts as the predominant microtubule (MT) nucleator that initiates MT formation and is therefore an essential factor for cell proliferation. Nonetheless, cellular MTs are formed after experimental depletion of the γ-tubulin complex, suggesting that cells possess other factors that drive MT nucleation. Here, by combining gene knockout, auxin-inducible degron, RNA interference, MT depolymerization/regrowth assay, and live microscopy, we identified four microtubule-associated proteins (MAPs), ch-TOG, CLASP1, CAMSAPs, and TPX2, which are involved in γ-tubulin–independent MT generation in human colon cancer cells. In the mitotic MT regrowth assay, nucleated MTs organized noncentriolar MT organizing centers (ncMTOCs) in the absence of γ-tubulin. Depletion of CLASP1 or TPX2 substantially delayed ncMTOC formation, suggesting that these proteins might promote MT nucleation in the absence of γ-tubulin. In contrast, depletion of ch-TOG or CAMSAPs did not affect the timing of ncMTOC appearance. CLASP1 also accelerates γ-tubulin–independent MT regrowth during interphase. Thus, MT generation can be promoted by MAPs without the γ-tubulin template.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号