首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) metabolism in rat renal cortex was examined. Athough the cyclic AMP and cyclic GMP phosphodiesterases are similarly distributed between the soluble and particulate fractions following differential centrifugation, their susceptibility to inhibition by theophylline, dl-4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724), and 1-methyl-3-isobutylxanthine (MIX) are quite different. Ro 20-1724 selectively inhibited both renal cortical-soluble and particulate cyclic AMP degradation, but had little effect on cyclic GMP hydrolysis. Theophylline and MIX effectively inhibited degradation of both cyclic nucleotides, with MIX the more potent inhibitor. Effects of these agents on the cyclic AMP and cyclic GMP content of cortical slices corresponded to their relative potency in broken cell preparations. Thus, in cortical slices, Ro 20-1724 (2 mm) had the least effect on basal (without agonist), carbamylcholine, and NaN3-stimulated cyclic GMP accumulation, but markedly increased basal and (parathyroid hormone) PTH-mediated cyclic AMP accumulation, MIX (2 mm) which was as effective as Ro 20-1724 in potentiating basal and PTH-stimulated increases in cyclic AMP also mediated the greatest augmentation of basal, carbamylcholine, and NaN3-stimulated accumulation of cyclic GMP. By contrast, theophylline (10 mm) which was only 12% as effective as Ro 20-1724 in increasing the total slice cyclic AMP content in the presence of PTH was much more effective than Ro 20-1724 in potentiating carbamylcholine and NaN3-mediated increases in cyclic GMP. These results demonstrate selective inhibition of cyclic nucleotide phosphodiesterase activities in the rat renal cortex and support the possibility of multiple cyclic nucleotide phosphodiesterases in this tissue. Furthermore, both cyclic nucleotides appear to be rapidly degraded in the renal cortex.  相似文献   

2.
The levels of cGMP and cAMP in the chick oviduct were evaluated during estrogen-induced differentiation and growth at two different stages of development. In the differentiating oviduct cGMP levels were found to change markedly. Tissue concentrations were elevated 35-fold by 2 hr after primary stimulation and about 3-fold at later time intervals. In contrast, constant levels of cGMP were observed during growth of the differentiated oviduct after secondary stimulation. cAMP concentrations were not or very little changed during differentiations and secondary stimulation of the oviduct. Our data suggest that elevated cGMP levels represent an active signal for the differentiative response of the chick oviduct to estrogens.  相似文献   

3.
Isolated fasciculata cells of rat adrenal cortex, when incubated with atrial natriuretic factor (ANF), stimulated the levels of cyclic GMP and corticosterone production in a concentration-dependent manner without a rise in the levels of cyclic AMP. The ANF-dependent elevation of cyclic GMP was rapid, with a detectable increment in 30 s. ANF also stimulated the particulate guanylate cyclase. These results not only indicate the coupling of cyclic GMP and corticosterone production with ANF signal, but also demonstrate that, like the ACTH signal, cyclic AMP is not the mediator of ANF-induced adrenocortical steroidogenesis.  相似文献   

4.
The effects of erythropoietin and hypoxia on cyclic nucleotide concentrations in erythroid tissue were evaluated. A rabbit bone marrow culture system and a mouse spleen model provided evidence that erythropoietin and an hypoxic stimulus which increases erythropoietin production may enhance erythropoiesis by initiating reciprocal changes in erythroid cell cyclic nucleotide levels. Cyclic GMP appears to be the active signal in mediating the response to erythropoietin, whereas cyclic AMP may be a passive signal allowing full expression of the cyclic GMP response. Whether the type of response mediated by cyclic nucleotides is proliferative, differentiative or both is not clear, but our data and that of other investigators suggest that cyclic GMP mediates the proliferative actions of erythropoietin.  相似文献   

5.
6.
The technique of cyclic nucleotide fluorescence immunohistochemistry has been applied for the specific localization of cyclic GMP in rat cerebellum. We report immunofluorescence associated with fibres and membranes, contrasting with previously reported cytoplasmic localization of cyclic AMP in different cell populations, using a similar technique. We have been unable to detect changes in cyclic GMP staining in response to post-mortem changes, harmaline and pentobarbitone administration. A role of cyclic GMP is suggested in membrane ion transport.  相似文献   

7.
8.
The second messenger cyclic guanosine monophosphate (cGMP) plays many roles during nervous system development. Consequently, cGMP production shows complex patterns of regulation throughout early development. Elevated glutamate levels are known to increase cGMP levels in the mature nervous system. A number of clinical conditions including ischemia and perinatal asphyxia can result in elevated glutamate levels in the developing brain. To investigate the effects of elevated glutamate levels on cGMP in the developing cortex we exposed mouse brain slices to glutamate or N‐methyl D ‐aspartate (NMDA). We find that at early postnatal stages when the endogenous production of cGMP is high, glutamate or NMDA exposure results in a significant lowering of the overall production of cGMP in the cortex, unlike the situation in the mature brain. However, this response pattern is complex with regional and cell‐type specific exceptions to the overall lowered cGMP production. These data emphasize that the response of the developing brain to physiological disturbances can be different from that of the mature brain, and must be considered in the context of the developmental events occurring at the time of disturbance. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

9.
10.
11.
cGMP and cAMP levels were measured in the duodenal mucosa of 12-day-old chicks that had been raised from hatching in vitamin D-depleting conditions and at the time of use were moderately hypocalcemic. After administration of a dose (250 ng) of 1,25-dihydroxycholecalciferol, the cGMP levels increased about twofold in 2–3 hr and returned to control levels between 4 and 6 hr. Our data suggest that 1,25-dihydroxycholecalciferol behaves like other steroid hormones which induce an early rise in cGMP in their respective target tissues.  相似文献   

12.
13.
14.
In concert with studies of the effects of various pharmacologic inhibitors of corticosteroidogenesis on adrenocortical morphology, U-8113, an analog of amphenone B, was administered daily to Sprague-Dawley rats for 7, 14, 21 or 30 day. The primary morphological responses involved increases in adrenal weight, width of zona fasciculata, width of zona reticularis, intracellular lipids, mitochondrial size, mitochondrial vacuolation and crystalline-like inclusions, small coated vesicles, lysosomes, autophagic vacuoles and cholesterol ester clefts. In particular, the increases in lysosomes, coated vesicles and autophagic vacuoles containing morphologically altered mitochondria were considered reflective of mechanisms designed to maintain cellular integrity amidst functional impairment. Lipid analysis revealed marked increases in cholesterol esters and phospholipids, supportive of morphological observations. When permitted a 14 day recovery period following either 14 or 30 days of inhibitor therapy, most fine structural alterations and lipid derangements were diminished, and the cells approximated normal parameters.  相似文献   

15.
Intact rat peritoneal macrophages (rPM) treated with 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of phosphodiesterases (PDEs), accumulated more cGMP than untreated cells. A PDE activity toward [(3)H]cGMP was detected in the soluble and particulate fractions of rPM. The hydrolysis of cGMP was Ca(2+)/calmodulin-independent but increased in the presence of cGMP excess. Similar results were obtained when [(3)H]cAMP was used as a substrate. The hydrolytic activity towards both nucleotides was inhibited in the presence of IBMX. Therefore, the PDEs of families 2, 5, 10 and 11 are potential candidates for cGMP hydrolysis in the rPM. They may not only regulate the cGMP level in a feedback-controlled way but also link cGMP-dependent pathways with those regulated by cAMP.  相似文献   

16.
17.
Abstract— Muscarinic cholinergic agonists increase cyclic GMP levels in a number of neural tissues. Since the rat hippocampus receives a cholinergic innervation from the septum, we decided to test whether cyclic GMP levels of the rat hippocampus are increased by bethanechol, a muscarinic cholinergic agonist. Incubation of rat hippocampi with varying concentrations of bethanechol showed that the increase in cyclic GMP levels is concentration-dependent, 500 pwbethanechol producing a maximum increase of 490% over control values. The bethanechol-evoked increases were blocked by the muscarinic antagonist atropine, and were calcium-dependent. It is concluded that at least some of the cells projecting to the rat hippocampus form muscarinic cholinergic synapses which act via a cyclic GMP-dependent mechanism.  相似文献   

18.
The subcellular localization of cyclic GMP and cyclic AMP in the rat caudate-putamen has been studied using horseradish peroxidase immunocytochemistry. Both of the putative neurotransmitter second messengers were visualized in neurons and glial cells at light microscopic resolutions, but not all cells of either category gave detectable staining. This was confirmed at the ultrastructural level where both stained and unstained elements of the same cell type were found within the same field. A striking variation was seen in cyclic nucleotide staining intensity within individual neural and glial cells. Both of the cyclic nucleotides were detected within postsynaptic terminal boutons and within astroglial processes. Cyclic GMP postsynaptic staining was stronger than glial staining, whereas the localization pattern was reversed for cyclic AMP. The synaptic localization of cyclic AMP and cyclic GMP immunoreactivity adds support to the idea that these compounds have an influential role in synaptic function within the striatum.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号