首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The atherogenicity theory for triglyceride-rich lipoproteins (TRLs; VLDL + intermediate density lipoprotein) generally cites the action of apolipoprotein C-III (apoC-III), a component of some TRLs, to retard their metabolism in plasma. We studied the kinetics of multiple TRL and LDL subfractions according to the content of apoC-III and apoE in 11 hypertriglyceridemic and normolipidemic persons. The liver secretes mainly two types of apoB lipoproteins: TRL with apoC-III and LDL without apoC-III. Approximately 45% of TRLs with apoC-III are secreted together with apoE. Contrary to expectation, TRLs with apoC-III but not apoE have fast catabolism, losing some or all of their apoC-III and becoming LDL. In contrast, apoE directs TRL flux toward rapid clearance, limiting LDL formation. Direct clearance of TRL with apoC-III is suppressed among particles also containing apoE. TRLs without apoC-III or apoE are a minor, slow-metabolizing precursor of LDL with little direct removal. Increased VLDL apoC-III levels are correlated with increased VLDL production rather than with slow particle turnover. Finally, hypertriglyceridemic subjects have significantly greater production of apoC-III-containing VLDL and global prolongation in residence time of all particle types. ApoE may be the key determinant of the metabolic fate of atherogenic apoC-III-containing TRLs in plasma, channeling them toward removal from the circulation and reducing the formation of LDLs, both those with apoC-III and the main type without apoC-III.  相似文献   

2.
Apolipoprotein CIII (apoCIII) plays an important role in plasma triglyceride and remnant lipoprotein metabolism. Because hypertriglyceridemia is an independent risk factor in coronary artery disease and the presence in plasma of triglyceride-rich remnant lipoproteins is correlated with atherosclerosis, considerable research efforts have been focused on the identification of factors regulating apoCIII gene expression to decrease its production. Here we report that the orphan nuclear hormone receptor Rev-erbalpha regulates the human apoCIII gene promoter. In apoCIII expressing human hepatic HepG2 cells, transfection of Rev-erbalpha specifically repressed apoCIII gene promoter activity. We determined by deletion and site-directed mutagenesis experiments that Rev-erbalpha dependent repression is mainly due to an element present in the proximal promoter of the apoCIII gene. In contrast, we found no functional Rev-erbalpha response elements in the convergently transcribed human apoAI gene or the common regulatory enhancer. The identified Rev-erbalpha response element coincides with a RORalpha1 element, and in the present study we provide evidence that functional cross-talk between these orphan receptors modulates the apoCIII promoter. In vitro binding analysis showed that monomers of Rev-erbalpha bound this element but not another upstream RORalpha1 response element. In addition, we showed that the closely related nuclear orphan receptor RVR also specifically repressed the human apoCIII gene. These studies underscore a novel physiological role for members of the Rev-erb family of nuclear receptors in the regulation of genes involved in triglyceride metabolism and the pathogenesis of atherosclerosis.  相似文献   

3.
4.
Previous studies have investigated the potential atherogenicity and thrombogenicity of triglyceride-rich lipoprotein (TRL) remnants by isolating them from plasma within a remnant-like particle (RLP) fraction, using an immunoaffinity gel containing specific anti-apoB-100 and anti-apoA-I antibodies. In order to characterize lipoproteins in this RLP fraction and to determine to what extent their composition varies from one individual to another, we have used automated gel filtration chromatography to determine the size heterogeneity of RLP isolated from normolipidemic control subjects (n = 8), and from type III (n = 6) and type IV (n = 9) hyperlipoproteinemic patients, who by selection had similarly elevated levels of plasma triglyceride (406 +/- 43 and 397 +/- 35 mg/dl, respectively). Plasma RLP triglyceride, cholesterol, apoB, apoC-III, and apoE concentrations were elevated 2- to 6-fold (P < 0. 05) in hyperlipoproteinemic patients compared to controls. RLP fractions of type III patients were enriched in cholesterol and apoE compared to those of type IV patients, and RLP of type IV patients were enriched in triglyceride and apoC-III relative to those of normolipidemic subjects. In normolipidemic subjects, the majority of RLP had a size similar to LDL or HDL. The RLP of hyperlipoproteinemic patients were, however, larger and were similar in size to TRL, or were intermediate in size (i.e., ISL) between that of TRL and LDL. Compared to controls, ISL in the RLP fraction of type III patients were enriched in apoE relative to apoC-III, whereas in type IV patients they were enriched in apoC-III relative to apoE. These results demonstrate that: 1) RLP are heterogeneous in size and composition in both normolipidemic and hypertriglyceridemic subjects, and 2) the apoE and apoC-III composition of RLP is different in type III compared to type IV hyperlipoproteinemic patients.  相似文献   

5.
6.
7.
8.
Potentially atherogenic triglyceride-rich lipoprotein (TRL) remnants can be isolated and quantitated as remnant-like particles (RLP), using an immunoaffinity gel containing specific anti-human apolipoprotein A-I (apoA-I) and apoB-100 monoclonal antibodies. The aim of the present study was to determine the relationship between postprandial changes in RLP levels and changes in total serum triglyceride (TG) in patients with different forms of hypertriglyceridemia (HTG). Three groups of patients were selected, having similarly elevated serum TG levels: a) HTG with TRL remnant accumulation (i.e., type III patients, n = 15, TG: 3.8 +/- 0.2 mm), b) HTG with increased LDL (i.e., type IIb patients, n = 15, TG: 3.7 +/- 0.2 mm), and c) HTG without evidence of remnant or LDL accumulation (i.e., type IV patients, n = 15, TG: 3.9 +/- 0.3 mm). Ingestion of a 45-g fat meal caused a significant increase in serum TG (30;-50%) in all patients. Mean serum TG levels of the three groups were not significantly different at 4 or 6 h after the meal. RLP cholesterol (C) and TG levels increased after the meal in all patients, but these postprandial increases were also not significantly different among groups. Type III patients had significantly higher (P < 0.01) levels of RLP-C and RLP-apoE in the fasted and fed state, and also had significantly higher RLP-C-to-serum TG ratios (P < 0.001) compared with the other groups. These results indicate that 1) RLP-C and RLP-TG levels are significantly increased in the fed versus fasted state in patients with elevated fasting TG levels; 2) patients with different forms of HTG, but similar TG levels, have similar postprandial increases in RLP-C and RLP-TG; and 3) type III patients have significantly elevated levels of RLP-C and RLP-apoE in both the fed and fasted state.  相似文献   

9.
10.
Apolipoprotein (apo) C-III and apoE play a central role in controlling the plasma metabolism of triglyceride-rich lipoproteins (TRL). We have investigated the plasma kinetics of total, very low density lipoprotein (VLDL) and high density lipoprotein (HDL) apoC-III and apoE in normolipidemic (NL) (n = 5), hypertriglyceridemic (HTG, n = 5), and Type III hyperlipoproteinemic (n = 2) individuals. Apolipoprotein kinetics were investigated using a primed constant (12 h) infusion of deuterium-labeled leucine. HTG and Type III patients had reduced rates of VLDL apoB-100 catabolism and no evidence of VLDL apoB-100 overproduction. Elevated (3- to 12-fold) total plasma and VLDL apoC-III levels in HTG and Type III patients, although associated with reduced apoC-III catabolism (i.e., increased residence times (RTs)), were mainly due to increased apoC-III production (plasma apoC-III transport rates (TRs, mean +/- SEM): (NL) 2.05 +/- 0.22 (HTG) 4.90 +/- 0.81 (P < 0.01), and (Type III) 8.78 mg. kg(-)(1). d(-)(1); VLDL apoC-III TRs: (NL) 1.35 +/- 0. 23 (HTG) 5.35 +/- 0.85 (P < 0.01), and (Type III) 7.40 mg. kg(-)(1). d(-)(1)). Elevated total plasma and VLDL apoE levels in HTG (2- and 6-fold, respectively) and in Type III (9- and 43-fold) patients were associated with increased VLDL apoE RTs (0.21 +/- 0.02, 0.46 +/- 0. 05 (P < 0.01), and 1.21 days, NL vs. HTG vs. Type III, respectively), as well as significantly increased apoE TRs (plasma: (NL) 2.94 +/- 0.78 (HTG) 5.80 +/- 0.59 (P < 0.01) and (Type III) 11.80 mg. kg(-)(1). d(-)(1); VLDL: (NL) 1.59 +/- 0.18 (HTG) 4.52 +/- 0.61 (P < 0.01) and (Type III) 11.95 mg. kg(-)(1). d(-)(1)).These results demonstrate that hypertriglyceridemic patients, having reduced VLDL apoB-100 catabolism (including patients with type III hyperlipoproteinemia) are characterized by overproduction of plasma and VLDL apoC-III and apoE.  相似文献   

11.
12.
13.
Several polymorphisms in the apolipoprotein C-III (apoC-III) gene have been associated with hypertriglyceridemia, but the link with coronary artery disease risk is still controversial. In particular, apoC-III promoter sequence variants in the insulin responsive element (IRE), constitutively resistant to downregulation by insulin, have never been investigated in this connection. We studied a total of 800 patients, 549 of whom had angiographically documented coronary atherosclerosis, whereas 251 had normal coronary arteriograms. We measured plasma lipids, insulin, apoA-I, apoB, and apoC-III and assessed three polymorphisms in the apoC-III gene, namely, T-455C in the IRE promoter region, C1100T in exon 3, and Sst1 polymorphic site (S1/S2) in the 3' untranslated region. Each variant influenced triglyceride levels, but only the T-455C (in homozygosity) and S2 alleles influenced apoC-III levels. In coronary artery disease (CAD) patients, 18.6% were homozygous for the -455C variant compared with only 9.2% in CAD-free group (P < 0.001). In logistic regression models, homozygosity for -455C variant was associated with a significantly increased risk of CAD (OR = 2.5 and 2.18 for unadjusted and adjusted models, respectively) suggesting that it represents an independent genetic susceptibility factor for CAD.  相似文献   

14.
Diet-induced obesity (OB) is usually accompanied by hypertriglyceridemia, which is characterized by the accumulation of triglyceride (TG)-rich lipoprotein (TRL) particles in the circulation. We previously found that postprandial TRL combined with insulin induced the adipogenic differentiation of 3T3-L1 preadipocytes, which may represent a key mechanism underlying obesity. However, the specific mechanism and signaling pathway involved in this process remain to be fully elucidated. In this study, we found that, in the postprandial state, patients with obesity had significantly higher levels of TG and remnant cholesterol (RC) than normal-weight controls. In vitro, we found that postprandial TRL, together with insulin, promoted the adipogenic differentiation of adipose-derived mesenchymal stem cells (AMSCs), as evidenced by the increased expression of lipogenesis-related genes and their protein products, including low-density lipoprotein related protein 1 (LRP1). Besides, caveolin-1 (Cav-1) expression was also significantly upregulated under this condition. Cav-1 and LRP1 were observed to interact, and then led to the activation of the PI3K/AKT1 signaling pathway. Meanwhile, the inhibition of LRP1 or Cav-1 significantly attenuated the adipogenic differentiation of AMSCs and downregulated AKT1 phosphorylation levels. Moreover, treatment with a selective AKT1 inhibitor significantly suppressed postprandial TRL and insulin-induced adipogenesis in AMSCs. Combined, our results demonstrated that, in association with insulin, postprandial TRL can promote the adipogenic differentiation of AMSCs in a manner that is dependent on the LRP1/Cav-1-mediated activation of the PI3K/AKT1 signaling pathway. Our findings indicated that a postprandial increase in TRL content is a critical factor in the pathogenesis of hypertriglyceridemia and diet-induced obesity.  相似文献   

15.
The adaptive value of apolipoprotein B-48 (apoB-48), the truncated form of apoB produced by the intestine, in lipid metabolism remains unclear. We crossed human apoC-III transgenic mice with mice expressing either apoB-48 only (apoB48/48) or apoB-100 only (apoB100/100). Cholesterol levels were higher in apoB48/48 mice than in apoB100/100 mice but triglyceride levels were similar. Lipid levels were increased by the apoC-III transgene. However, triglyceride levels were significantly higher in apoB100/100C-III than in apoB48/48C-III mice (895 +/- 395 mg/dl vs. 690 +/- 252 mg/dl; P <0.01), whereas cholesterol levels were higher in the apoB48/48C-III mice than in apoB100/100C-III (144 +/- 35 mg/dl vs. 94 +/- 30 mg/dl; P <0.00001). Triglyceride clearance from VLDL was impaired to a greater extent in apoB100/100C-III vs. apoB100/100 mice than in apoB48/48C-III vs. apoB48/48 mice. Triglyceride secretion rates were no different in apoC-III transgenic mice than in their nontransgenic littermates. ApoB-48 triglyceride-rich lipoproteins were more resistant to the triglyceride-increasing effects of apoC-III but appeared more sensitive to the remnant clearance inhibition. Our findings support a coordinated role for apoB-48 in facilitating the delivery of dietary triglycerides to the periphery. Consistent with such a mechanism, glucose levels were significantly higher in apoB48/48 mice vs. apoB100/100 mice, perhaps on the basis of metabolic competition.  相似文献   

16.
The effect of frozen storage on lipoprotein distribution of apolipoprotein C-III (apoC-III) and apoE was investigated by measuring apoC-III and apoE by ELISA in HDL and apoB-containing lipoproteins of human plasma samples (n = 16) before and after 2 weeks of frozen storage (-20 degrees C). HDLs were separated by heparin-manganese precipitation (HMP) or by fast-protein liquid chromatography (FPLC). Total plasma apoC-III and apoE levels were not affected by frozen storage. HDL-HMP apoC-III and apoE levels were significantly higher in frozen versus fresh samples: 7.7 +/- 0.7 versus 6.7 +/- 0.7 mg/dl (P < 0.05) and 2.0 +/- 0.1 versus 1.2 +/- 0.1 mg/dl (P < 0.001), respectively. HDL-FPLC apoC-III and apoE, but not triglyceride (TG) or cholesterol, levels were also higher in frozen samples: 12.0 +/- 1.2 versus 7.5 +/- 0.6 mg/dl (P < 0.001) and 2.7 +/- 0.2 versus 1.6 +/- 0.2 mg/dl (P < 0.001), respectively. Frozen storage led to a decrease in apoC-III (-17 +/- 9%) and apoE (-19 +/- 9%) in triglyceride-rich lipoprotein. Redistribution of apoC-III and apoE was most evident in samples with high TG levels. HDL apoC-III and apoE levels were also significantly higher when measured in plasma stored at -80 degrees C. Our results demonstrate that lipoprotein distribution of apoC-III and apoE is affected by storage of human plasma, suggesting that analysis of frozen plasma should be avoided in studies relating lipoprotein levels of apoC-III and/or apoE to the incidence of coronary artery disease.  相似文献   

17.
Plasma low- and high-density lipoproteins (LDL and HDL) are cleared from the circulation by specific receptors and are either totally degraded or their cholesteryl esters (CE) are selectively delivered to cells by receptors such as the scavenger receptor class B type I (SR-BI). The aim of the present study was to define the effect of apoC-II and apoC-III on the uptake of LDL and HDL by HepG2 cells. Stable transformants were obtained with sense or antisense strategies that secrete 47-294% the normal level of apoC-II or 60-200% that of apoC-III. Different levels of secreted apoC-II or apoC-III had little effect on LDL and HDL protein degradation by HepG2 cells. However, compared to controls, cells under-expressing apoC-II showed a 160% higher capacity to selectively take up HDL-CE, while cells under-expressing apoC-III demonstrated 70 and 160% higher capacity to take up CE from LDL and HDL, respectively. In experiments conducted with exogenously added apoC-II or apoC-III, no significant effect was observed on lipoprotein-protein association/degradation; however, LDL-CE and HDL-CE selective uptake was significantly reduced in a dose-dependent manner. These results indicate that apoC-II and apoC-III inhibit CE-selective uptake.  相似文献   

18.
19.
Apolipoprotein C-III (apoC-III) is a major protein of very low density lipoprotein (VLDL). The apoC-III polypeptide contains a carbohydrate chain containing galactosamine, galactose, and sialic acid attached in O-linkage to a threonine residue at position 74. We have cloned the apoC-III gene from a subject whose serum contained unusually high amounts of apoC-III lacking the carbohydrate moiety (C-III-0). DNA sequence analysis of the cloned gene revealed a single nucleotide substitution (A----G) that encodes an alanine at position 74 instead of the normal threonine. As a result of this amino acid replacement, the mutant apoC-III polypeptide is not glycosylated. The mutation in the apoC-III gene creates a novel AluI site that permits diagnosis of the change by Southern blotting of genomic DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号