首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cryptococcus neoformans is a human opportunistic fungal pathogen responsible for ∼1/3 of HIV/AIDS deaths worldwide. This budding yeast expresses a polysaccharide capsule necessary for virulence. Capsule production inhibits phagocytosis by macrophages. Here we describe results that link copper homeostasis to capsule production and the inhibition of phagocytosis. Specifically, using Agrobacterium-mediated insertional mutagenesis, we identified an insertion in the promoter region of the putative copper transporter-encoding gene CTR2 that results in reduced expression of CTR2 and increased phagocytosis by murine RAW264.7 macrophages. The mutant also displayed sensitivity to copper starvation and defects in polysaccharide capsule production and melanization. These defects were all reversed by genetic correction of the promoter insertion by homologous targeting. Several melanization-defective mutants identified previously, those in the RIM20, RIM101, and VPS25 genes, also display sensitivity to copper starvation, reduced capsule production and increased phagocytosis. Together these results indicate a previously undescribed link between copper homeostasis to polysaccharide capsule production and phagocytosis inhibition in Cryptococcus neoformans.  相似文献   

2.
The capsule is generally considered one of the more powerful virulence factors of microorganisms, driving research in the field of microbial pathogenesis and in the development of vaccines. Cryptococcus neoformans is unique among the most common human fungal pathogens in that it possesses a complex polysaccharide capsule. This review focuses on the Cryptococcus neoformans capsule from the viewpoint of fungal pathogenesis, and the effective immune response target of the capsule’s main component, glucuronoxylomannan.  相似文献   

3.
Escherichia coli K1's Capsule Is a Barrier to Bacteriophage T7   总被引:1,自引:0,他引:1  
Escherichia coli strains that produce the K1 polysaccharide capsule have long been associated with pathogenesis. This capsule is believed to increase the cell's invasiveness, allowing the bacteria to avoid phagocytosis and inactivation by complement. It is also recognized as a receptor by some phages, such as K1F and K1-5, which have virion-associated enzymes that degrade the polysaccharide. In this report we show that expression of the K1 capsule in E. coli physically blocks infection by T7, a phage that recognizes lipopolysaccharide as the primary receptor. Enzymatic removal of the K1 antigen from the cell allows T7 to adsorb and replicate. This observation suggests that the capsule plays an important role as a defense against some phages that recognize structures beneath it and that the K1-specific phages evolved to counter this physical barrier.  相似文献   

4.
Microbial capsules are important for virulence, but their architecture and physical properties are poorly understood. The human pathogenic fungus Cryptococcus neoformans has a large polysaccharide capsule that is necessary for virulence and is the target of protective antibody responses. To study the C. neoformans capsule we developed what we believe is a new approach whereby we probed the capsular elastic properties by applying forces using polystyrene beads manipulated with optical tweezers. This method allowed us to determine the Young's modulus for the capsule in various conditions that affect capsule growth. The results indicate that the Young's modulus of the capsule decreases with its size and increases with the Ca2+ concentration in solution. Also, capsular polysaccharide manifests an unexpected affinity for polystyrene beads, a property that may function in attachment to host cells and environmental structures. Bead probing with optical tweezers provides a new, nondestructive method that may have wide applicability for studying the effects of growth conditions, immune components, and drugs on capsular properties.  相似文献   

5.
6.
The human and bovine bacterial pathogen Streptococcus agalactiae (Group B Streptococcus, GBS) expresses a thick polysaccharide capsule that constitutes a major virulence factor and vaccine target. GBS can be classified into ten distinct serotypes differing in the chemical composition of their capsular polysaccharide. However, non-typeable strains that do not react with anti-capsular sera are frequently isolated from colonized and infected humans and cattle. To gain a comprehensive insight into the molecular basis for the loss of capsule expression in GBS, a collection of well-characterized non-typeable strains was investigated by genome sequencing. Genome based phylogenetic analysis extended to a wide population of sequenced strains confirmed the recently observed high clonality among GBS lineages mainly containing human strains, and revealed a much higher degree of diversity in the bovine population. Remarkably, non-typeable strains were equally distributed in all lineages. A number of distinct mutations in the cps operon were identified that were apparently responsible for inactivation of capsule synthesis. The most frequent genetic alterations were point mutations leading to stop codons in the cps genes, and the main target was found to be cpsE encoding the portal glycosyl trasferase of capsule biosynthesis. Complementation of strains carrying missense mutations in cpsE with a wild-type gene restored capsule expression allowing the identification of amino acid residues essential for enzyme activity.  相似文献   

7.
The polysaccharide capsule of Streptococcus pneumoniae defines over ninety serotypes, which differ in their carriage prevalence and invasiveness for poorly understood reasons. Recently, an inverse correlation between carriage prevalence and oligosaccharide structure of a given capsule has been described. Our previous work suggested a link between serotype and growth in vitro. Here we investigate whether capsule production interferes with growth in vitro and whether this predicts carriage prevalence in vivo. Eighty-one capsule switch mutants were constructed representing nine different serotypes, five of low (4, 7F, 14, 15, 18C) and four of high carriage prevalence (6B, 9V, 19F, 23F). Growth (length of lag phase, maximum optical density) of wildtype strains, nontypeable mutants and capsule switch mutants was studied in nutrient-restricted Lacks medium (MLM) and in rich undefined brain heart infusion broth supplemented with 5% foetal calf serum (BHI+FCS). In MLM growth phenotype depended on, and was transferred with, capsule operon type. Colonization efficiency of mouse nasopharynx also depended on, and was transferred with, capsule operon type. Capsule production interfered with growth, which correlated inversely with serotype-specific carriage prevalence. Serotypes with better growth and higher carriage prevalence produced thicker capsules (by electron microscopy, FITC-dextran exclusion assays and HPLC) than serotypes with delayed growth and low carriage prevalence. However, expression of cpsA, the first capsule gene, (by quantitative RT-PCR) correlated inversely with capsule thickness. Energy spent for capsule production (incorporation of H3-glucose) relative to amount of capsule produced was higher for serotypes with low carriage prevalence. Experiments in BHI+FCS showed overall better bacterial growth and more capsule production than growth in MLM and differences between serotypes were no longer apparent. Production of polysaccharide capsule in S. pneumoniae interferes with growth in nutrient-limiting conditions probably by competition for energy against the central metabolism. Serotype-specific nasopharyngeal carriage prevalence in vivo is predicted by the growth phenotype.  相似文献   

8.
The polysaccharide fraction of the capsule of Papaver somniferum contained bound morphine and codeine. The alkaloids appear to be bound to the polymer by two different types of linkage.  相似文献   

9.
10.
In 1931, Dr Margaret Pittman reported her discovery that Haemophilus influenzae strains responsible for meningitis had a polysaccharide capsule, and that one capsular type, serotype b, was responsible for nearly all cases. Diverse programmes of research aimed at understanding and exploiting this seminal observation culminated, in the 1980s, in the introduction of a purified type b polysaccharide vaccine to protect children against this terrible disease. Subsequent improvements in vaccine immunogenicity have translated into impressive efficacy and the suggestion that, were all children to be immunized, a major cause of life-threatening childhood infection might be vanquished.  相似文献   

11.
Analysing the pathogenic mechanisms of a bacterium requires an understanding of the composition of the bacterial cell surface. The bacterial surface provides the first barrier against innate immune mechanisms as well as mediating attachment to cells/surfaces to resist clearance. We utilised a series of Klebsiella pneumoniae mutants in which the two major polysaccharide layers, capsule and lipopolysaccharide (LPS), were absent or truncated, to investigate the ability of these layers to protect against innate immune mechanisms and to associate with eukaryotic cells. The capsule alone was found to be essential for resistance to complement mediated killing while both capsule and LPS were involved in cell-association, albeit through different mechanisms. The capsule impeded cell-association while the LPS saccharides increased cell-association in a non-specific manner. The electrohydrodynamic characteristics of the strains suggested the differing interaction of each bacterial strain with eukaryotic cells could be partly explained by the charge density displayed by the outermost polysaccharide layer. This highlights the importance of considering not only specific adhesin:ligand interactions commonly studied in adherence assays but also the initial non-specific interactions governed largely by the electrostatic interaction forces.  相似文献   

12.
The polysaccharide capsule of fungal pathogen Cryptococcus neoformans is a critical virulence factor that has historically evaded complete characterization. Cryptococcal polysaccharides are known to either remain attached to the cell as capsular polysaccharides (CPSs) or to be shed into the extracellular space as exopolysaccharides (EPSs). While many studies have examined the properties of EPS, far less is known about CPS. In this work, we detail the development of new physical and enzymatic methods for the isolation of CPS which can be used to explore the architecture of the capsule and isolated capsular material. We show that sonication or Glucanex enzyme cocktail digestion yields soluble CPS preparations, while use of a French pressure cell press or Glucanex digestion followed by cell disruption removed the capsule and produced cell wall–associated polysaccharide aggregates that we call “capsule ghosts”, implying an inherent organization that allows the CPS to exist independent of the cell wall surface. Since sonication and Glucanex digestion were noncytotoxic, it was also possible to observe the cryptococcal cells rebuilding their capsule, revealing the presence of reducing end glycans throughout the capsule. Finally, analysis of dimethyl sulfoxide-extracted and sonicated CPS preparations revealed the conservation of previously identified glucuronoxylomannan motifs only in the sonicated CPS. Together, these observations provide new insights into capsule architecture and synthesis, consistent with a model in which the capsule is assembled from the cell wall outward using smaller polymers, which are then compiled into larger ones.  相似文献   

13.
Several genes are essential for Cryptococcus neoformans capsule synthesis, but their functions are unknown. We examined the localization of glucuronoxylomannan (GXM) in strain B-3501 and in cap59 mutants B-4131 and C536. Wild-type strain B-3501 showed a visible capsule by India ink staining and immunofluorescence with anticapsular monoclonal antibodies (MAbs) 12A1 and 18B7. B-4131, a mutant containing a missense mutation in CAP59, showed no capsule by India ink staining but revealed the presence of capsular polysaccharide on the cell surface by immunofluorescence. The cap59 gene deletion mutant (C536), however, did not show a capsule by either India ink staining or immunofluorescence. Analysis of cell lysates for GXM by enzyme-linked immunosorbent assay revealed GXM in C536 samples. Furthermore, the epitopes recognized by MAbs 12A1, 2D10, 13F1, and 18B7 were each detected in the cytoplasm of all strains by immunogold electron microscopy, although there were differences in location consistent with differences in epitope synthesis and/or transport. In addition, the cells of B-3501 and B-4131, but not those of the cap59 deletant, assimilated raffinose or urea. Hence, the missense mutation of CAP59 in B-4131 partially hampered the trafficking of GXM but allowed the secretion of enzymes involved in hydrolysis of raffinose or urea. Furthermore, the cell diameter and volume for strain C536 are higher than those for strain B-3501 or B-4131 and may suggest the accumulation of cellular material in the cytoplasm. Our results suggest that CAP59 is involved in capsule synthesis by participating in the process of GXM (polysaccharide) export.  相似文献   

14.
Cryptococcus neoformans is a basidiomycete that causes deadly infections in the immunocompromised. We previously generated a secretion mutant in this fungus by introducing a mutation in the SAV1 gene, which encodes a homolog of the Sec4/Rab8 subfamily GTPases. Under restrictive conditions there are two notable morphological changes in the sav1 mutant: accumulation of post-Golgi vesicles and the appearance of an unusual organelle, which we term the sav1 body (SB). The SB is an electron-transparent structure 0.2–1 μm in diameter, with vesicles or other membranous structures associated with the perimeter. Surprisingly, the SB was heavily labeled with anti-glucuronoxylomannan (GXM) antibodies, suggesting that it contains a secreted capsule component, GXM. A structure similar to the SB, also labeled by anti-GXM antibodies, was induced in wild type cells treated with the vacuolar-ATPase inhibitor, bafilomycin A1. Bafilomycin A1 and other agents that increase intraluminal pH also inhibited capsule polysaccharide shedding and capsule growth. These studies highlight an unusual organelle observed in C. neoformans with a potential role in polysaccharide synthesis, and a link between luminal pH and GXM biosynthesis.  相似文献   

15.
A rhamnose, galactose and pyruvic acid containing polysaccharide (capsule) together with the peptidoglycan was isolated fromRhodopseudomonas capsulata St. Louis as the insoluble sediment after sodium dodecyl sulfate extraction of cell envelope fractions. Treatment with pronase E separated the soluble polysaccharide from the insoluble peptidoglycan. After lysozyme-digestion, both the capsule polysaccharide and peptidoglycan were soluble.The capsule was also accumulated in the combined interphase/phenol-phase of hot phenol-water extracts of whole cells. Again, the capsule and peptidoglycan were sedimented together as long as no pronase E-treatment was performed. With the phage-resistant mutant (R. capsulata St. Louis RC1-), no capsule polysaccharide was obtained in the combined interphase/phenol phase.An acidic polysaccharide (slime) different from the capsule in composition and serology was obtained by Cetavlon fractionation of hot phenol/water extracts of cells of both the wild-type and the mutant cells. It was shown to consist mainly of rhamnose, glucosamine and galacturonic acid.The use of O/K-antisera and of capsule polysaccharideantisera allowed a separate visualization of the capsule and slime layers.This paper is dedicated to Professor Hans G. Schoegel on the occasion of his 60th birthday  相似文献   

16.
Campylobacter jejuni produces a polysaccharide capsule that is the major determinant of the Penner serotyping scheme. This passive slide agglutination typing system was developed in the early 1980’s and was recognized for over two decades as the gold standard for C. jejuni typing. A preliminary multiplex PCR technique covering 17 serotypes was previously developed in order to replace this classic serotyping scheme. Here we report the completion of the multiplex PCR technology that is able to identify all the 47 Penner serotypes types known for C. jejuni. The number of capsule types represented within the 47 serotypes is 35. We have applied this method to a collection of 996 clinical isolates from Thailand, Cambodia and Nepal and were able to successfully determine capsule types of 98% of these.  相似文献   

17.
Haemophilus parasuis is the causative agent of Glässer''s disease, a systemic disease of pigs, and is also associated with pneumonia. H. parasuis can be classified into 15 different serovars. Here we report, from the 15 serotyping reference strains, the DNA sequences of the loci containing genes for the biosynthesis of the group 1 capsular polysaccharides, which are potential virulence factors of this bacterium. We contend that these loci contain genes for polysaccharide capsule structures, and not a lipopolysaccharide O antigen, supported by the fact that they contain genes such as wza, wzb, and wzc, which are associated with the export of polysaccharide capsules in the current capsule classification system. A conserved region at the 3′ end of the locus, containing the wza, ptp, wzs, and iscR genes, is consistent with the characteristic export region 1 of the model group 1 capsule locus. A potential serovar-specific region (region 2) has been found by comparing the predicted coding sequences (CDSs) in all 15 loci for synteny and homology. The region is unique to each reference strain with the exception of those in serovars 5 and 12, which are identical in terms of gene content. The identification and characterization of this locus among the 15 serovars is the first step in understanding the genetic, molecular, and structural bases of serovar specificity in this poorly studied but important pathogen and opens up the possibility of developing an improved molecular serotyping system, which would greatly assist diagnosis and control of Glässer''s disease.  相似文献   

18.
Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.  相似文献   

19.
The intracellular expression of the K5 lyase enzyme, which degrades the K5 polysaccharide, decreased cell surface expression of the Escherichia coli K5 capsule. This indicates that biosynthesis of K5 polysaccharide in the cytoplasm is accessible to the action of K5 lyase and is not synthesized within a protected cytoplasmic compartment.The polysaccharide capsules of bacteria have been studied in most detail in Escherichia coli (13). E. coli has over 80 chemically and serologically distinct polysaccharide capsules, which are designated K antigens and classified into four groups (13). Group 2 polysaccharide capsules, of which K1 and K5 have been most studied (12, 13), are commonly expressed in pathogenic extraintestinal E. coli (1, 3, 7) and closely resemble the capsules of Neisseria meningitidis and Haemophilus influenzae (13). Group 2 capsule gene clusters have a conserved genetic organization comprising three regions. Regions 1 and 3 are common to all group 2 capsule gene clusters and encode the Kps proteins involved in polysaccharide export across the inner membrane, periplasm, and outer membrane. Region 2, flanked by regions 1 and 3, contains the highly variable serotype-specific genes involved in the biosynthesis of the particular polysaccharide (12, 13). In the case of the K5 capsule gene cluster, this involves the kfiABCD genes (9).The biosynthesis of the K5 polysaccharide occurs through the sequential addition of GlcA and GlcNAc residues to the nonreducing end of the polysaccharide chain catalyzed by two glycosyltransferases, KfiA and KfiC (4, 6). Polysaccharide biosynthesis occurs at the cytoplasmic face of the inner membrane and involves a hetero-oligomeric complex, consisting of proteins involved in both biosynthesis and export, that is localized at the pole of the cell (8). Such a complex would facilitate a linkage between polysaccharide synthesis and export, although at this stage the mechanism by which synthesis and export are linked is unclear. A recent paper in which the K1-specific endosialidase was expressed in the cytoplasm of a K1-expressing strain indicated that K1 polysaccharide synthesis may occur within a protected cytoplasmic compartment that is inaccessible to endosialidase cleavage (10). To test whether this was also true for the synthesis of the K5 polysaccharide, we expressed the K5-specific lyase, an enzyme that specifically degrades K5 and is associated with the tail spike of K5-specific bacteriophage (2, 5), in the cytoplasm of a K5-encoding strain. In contrast to the situation with K1, we found that expression of the K5 lyase in the cytoplasm reduced the cell surface expression of K5 polysaccharide, suggesting that unlike K1 polysaccharide synthesis, K5 polysaccharide is not synthesized within a protected cytoplasmic compartment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号