首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Escherichia coli SOS response to DNA damage is modulated by the RecA protein, a recombinase that forms an extended filament on single-stranded DNA and hydrolyzes ATP. The RecA K72R ( recA2201 ) mutation eliminates the ATPase activity of RecA protein. The mutation also limits the capacity of RecA to form long filaments in the presence of ATP. Strains with this mutation do not undergo SOS induction in vivo . We have combined the K72R variant of RecA with another mutation, RecA E38K ( recA730 ). In vitro , the double mutant RecA E38K/K72R ( recA730,2201 ) mimics the K72R mutant protein in that it has no ATPase activity. The double mutant protein will form long extended filaments on ssDNA and facilitate LexA cleavage almost as well as wild-type, and do so in the presence of ATP. Unlike recA K72R, the recA E38K/K72R double mutant promotes SOS induction in vivo after UV treatment. Thus, SOS induction does not require ATP hydrolysis by the RecA protein, but does require formation of extended RecA filaments. The RecA E38K/K72R protein represents an improved reagent for studies of the function of ATP hydrolysis by RecA in vivo and in vitro .  相似文献   

2.
Summary In Escherichia coli, induction of the SOS functions by UV irradiation or by mutation in the recA gene promotes an SOS mutator activity which generates mutations in undamaged DNA. Activation of RecA protein by the recA730 mutation increases the level of spontaneous mutation in the bacterial DNA. The number of recA730-induced mutations is greatly increased in mismatch repair deficient strains in which replication errors are not corrected. This suggests that the majority of recA730-induced mutations (90%) arise through correctable, i.e. non-targeted, replication errors. This recA730 mutator effect is suppressed by a mutation in the umuC gene. We also found that dam recA730 double mutants are unstable, segregating clones that have lost the dam or the recA mutations or that have acquired a new mutation, probably in one of the genes involved in mismatch repair. We suggest that the genetic instability of the dam recA730 mutants is provoked by the high level of replication errors induced by the recA730 mutation, generating killing by coincident mismatch repair on the two unmethylated DNA strands. The recA730 mutation increases spontaneous mutagenesis of phage poorly. UV irradiation of recA730 host bacteria increases phage untargeted mutagenesis to the level observed in UV-irradiated recA + strains. This UV-induced mutator effect in recA730 mutants is not suppressed by a umuC mutation. Therefore UV and the recA730 mutation seem to induce different SOS mutator activities, both generating untargeted mutations.  相似文献   

3.
The recA730 mutation results in constitutive SOS and prophage induction. We examined biochemical properties of recA730 protein in an effort to explain the constitutive activity observed in recA730 strains. We find that recA730 protein is more proficient than the wild-type recA protein in the competition with single-stranded DNA binding protein (SSB protein) for single-stranded DNA (ssDNA) binding sites. Because an increased aptitude in the competition with SSB protein has been previously reported for recA441 protein and recA803 protein, we directly compared their in vitro activities with those of recA730 protein. At low magnesium ion concentration, both ATP hydrolysis and lexA protein cleavage experiments demonstrate that these recA proteins displace SSB protein from ssDNA in a manner consistent with their in vivo repressor cleavage activity, i.e. recA730 protein > recA441 protein > recA803 protein > recAwt protein. Additionally, a correlation exists between the proficiency of the recA proteins in SSB protein displacement and their rate of association with ssDNA. We propose that an increased rate of association with ssDNA allows recA730 protein to displace SSB protein from the ssDNA that occurs naturally in Escherichia coli and thereby to become activated for the repressor cleavage that leads to SOS induction. RecA441 protein is similarly activated for repressor cleavage; however, in this case, significant SSB protein displacement occurs only at elevated temperature. At physiological magnesium ion concentration, we argue that recA803 protein and wild-type recA protein do not displace sufficient SSB protein from ssDNA to constitutively induce the SOS response.  相似文献   

4.
To better understand the mechanisms of SOS mutagenesis in the bacterium Escherichia coli, we have undertaken a genetic analysis of the SOS mutator activity. The SOS mutator activity results from constitutive expression of the SOS system in strains carrying a constitutively activated RecA protein (RecA730). We show that the SOS mutator activity is not enhanced in strains containing deficiencies in the uvrABC nucleotide excision-repair system or the xth and nfo base excision-repair systems. Further, recA730-induced errors are shown to be corrected by the MutHLS-dependent mismatch-repair system as efficiently as the corresponding errors in the rec+ background. These results suggest that the SOS mutator activity does not reflect mutagenesis at so-called cryptic lesions but instead represents an amplification of normally occurring DNA polymerase errors. Analysis of the base-pair-substitution mutations induced by recA730 in a mismatch repair-deficient background shows that both transition and transversion errors are amplified, although the effect is much larger for transversions than for transitions. Analysis of the mutator effect in various dnaE strains, including dnaE antimutators, as well as in proofreading-deficient dnaQ (mutD) strains suggests that in recA730 strains, two types of replication errors occur in parallel: (i) normal replication errors that are subject to both exonucleolytic proofreading and dnaE antimutator effects and (ii) recA730-specific errors that are not susceptible to either proofreading or dnaE antimutator effects. The combined data are consistent with a model suggesting that in recA730 cells error-prone replication complexes are assembled at sites where DNA polymerization is temporarily stalled, most likely when a normal polymerase insertion error has created a poorly extendable terminal mismatch. The modified complex forces extension of the mismatch largely at the exclusion of proofreading and polymerase dissociation pathways. SOS mutagenesis targeted at replication-blocking DNA lesions likely proceeds in the same manner.  相似文献   

5.
Survival and induction of the SOS system by 5-azacytidine, an analog of cytidine, were studied in Escherichia coli K-12. This compound did not produce any effect on the viability of dcm and dam dcm mutants. Furthermore, recA430 and lexA1 strains (both mutations interfere with LexA repressor cleavage but not recombination proficiency) were more resistant than the wild-type strain of E. coli K-12. In contrast, recBC and recA13 mutants were more sensitive to 5-azacytidine than the wild type. Transient exposure of E. coli to 5-azacytidine for 60 min induced both recA-dependent inhibition of cell division and induction of lambda prophage in Dcm+ strains but not in Dcm- mutants. Expression of both functions was dependent on recBC exonuclease. On the other hand, 5-azacytidine was unable to trigger the induction of umuCD and mucB genes and no amplification of RecA protein synthesis in either Dcm+ or Dcm- strains was observed. These last results are in agreement with previously reported data suggesting that there is a discrimination in the expression of the several SOS functions and that some SOS genes may be induced without amplification of RecA protein synthesis.  相似文献   

6.
In recA718 lexA+ strains of Escherichia coli, induction of the SOS response requires DNA damage. This implies that RecA718 protein, like RecA+ protein, must be converted, by a process initiated by the damage, to an activated form (RecA) to promote cleavage of LexA, the cellular repressor of SOS genes. However, when LexA repressor activity was abolished by a lexA-defective mutation [lexA(Def)], strains carrying the recA718 gene (but not recA+) showed strong SOS mutator activity and were able to undergo stable DNA replication in the absence of DNA damage (two SOS functions known to require RecA activity even when cleavage of LexA is not necessary). lambda lysogens of recA718 lexA(Def) strains exhibited mass induction of prophage, indicative of constitutive ability to cleave lambda repressor. When the cloned recA718 allele was present in a lexA+ strain on a plasmid, SOS mutator activity and beta-galactosidase synthesis under LexA control were expressed in proportion to the plasmid copy number. We conclude that RecA718 is capable of becoming activated without DNA damage for cleavage of LexA and lambda repressor, but only if it is amplified above its base-line level in lexA+ strains. At amplified levels, RecA718 was also constitutively activated for its roles in SOS mutagenesis and stable DNA replication. The nucleotide sequence of recA718 reveals two base substitutions relative to the recA+ sequence. We propose that the first allows the protein to become activated constitutively, whereas the second partially suppresses this capability.  相似文献   

7.
E. coli strains bearing the recA441 mutation and various mutations in the polA gene resulting in enzymatically well-defined deficiencies of DNA polymerase I have been constructed. It was found that the recA441 strains bearing either the polA1 or polA12 mutation causing deficiency of the polymerase activity of pol I are unable to grow at 42 degrees C on minimal medium supplemented with adenine, i.e., when the SOS response is continuously induced in strains bearing the recA441 mutation. Under these conditions the inhibition of DNA synthesis is followed in recA441 polA12 by DNA degradation and loss of cell viability. A similar lethal effect is observed with the recA730 polA12 mutant. The recA441 strain bearing the polA107 mutation resulting in the deficiency of the 5'-3' exonuclease activity of pol I shows normal growth under conditions of continuous SOS response. We postulate that constitutive expression of the SOS response leads to an altered requirement for the polymerase activity of pol I.  相似文献   

8.
The Escherichia coli SOS system is a well-established model for the cellular response to DNA damage. Control of SOS depends largely on the RecA protein. When RecA is activated by single-stranded DNA in the presence of a nucleotide triphosphate cofactor, it mediates cleavage of the LexA repressor, leading to expression of the 30+-member SOS regulon. RecA activation generally requires the introduction of DNA damage. However, certain recA mutants, like recA730, bypass this requirement and display constitutive SOS expression as well as a spontaneous (SOS) mutator effect. Presently, we investigated the possible interaction between SOS and the cellular deoxynucleoside triphosphate (dNTP) pools. We found that dNTP pool changes caused by deficiencies in the ndk or dcd genes, encoding nucleoside diphosphate kinase and dCTP deaminase, respectively, had a strongly suppressive effect on constitutive SOS expression in recA730 strains. The suppression of the recA730 mutator effect was alleviated in a lexA-deficient background. Overall, the findings suggest a model in which the dNTP alterations in the ndk and dcd strains interfere with the activation of RecA, thereby preventing LexA cleavage and SOS induction.  相似文献   

9.
Sensing DNA damage and initiation of genetic responses to repair DNA damage are critical to cell survival. In Escherichia coli , RecA polymerizes on ssDNA produced by DNA damage creating a RecA–DNA filament that interacts with the LexA repressor inducing the SOS response. RecA filament stability is negatively modulated by RecX and UvrD. recA730 (E38K) and recA4142 (F217Y) constitutively express the SOS response. recA4162 (I298V) and recA4164 (L126V) are intragenic suppressors of the constitutive SOS phenotype of recA730 . Herein, it is shown that these suppressors are not allele specific and can suppress SOSC expression of recA730 and recA4142 in cis and in trans . recA4162 and recA4164 single mutants (and the recA730 and recA4142 derivatives) are Rec+, UVR and are able to induce the SOS response after UV treatment like wild-type. UvrD and RecX are required for the suppression in two ( recA730,4164 and recA4142,4162 ) of the four double mutants tested. To explain the data, one model suggests that recA C alleles promote SOSC expression by mimicking RecA filament structures that induce SOS and the suppressor alleles mimic RecA filament at end of SOS. UvrD and RecX are attracted to these latter structures to help dismantle or destabilize the RecA filament.  相似文献   

10.
A gene required for growth and viability in recA mutants of Escherichia coli K-12 was identified. This gene, rdgB (for Rec-dependent growth), mapped near 64 min on the E. coli genetic map. In a strain carrying a temperature-sensitive recA allele, recA200, and an rdgB mutation, DNA synthesis but not protein synthesis ceased after 80 min of incubation at 42 degrees C, and there was extensive DNA degradation. The rdgB mutation alone had no apparent effect on DNA synthesis or growth; however, mutant strains did show enhanced intrachromosomal recombination and induction of the SOS regulon. The rdgB gene was cloned and its-gene product identified through the construction and analysis of deletion and insertion mutations of rdgB-containing plasmids. The ability of a plasmid to complement an rdgB recA mutant was correlated with its ability to produce a 25-kilodalton polypeptide as detected by the maxicell technique.  相似文献   

11.
Summary Cellular activities normally inducible by DNA damage (SOS functions) are expressed, without DNA damage, in recA441 (formerly tif-1) mutants of Escherichia coli at 42° C but not at 30° C. We describe a strain (SC30) that expresses SOS functions (including mutator activity, prophage induction and copious synthesis of recA protein) constitutively at both temperatures. SC30 is one of four stable subclones (SC strains) derived from an unstable recombinant obtained in a conjugation between a recA441 K12 donor and a recA + B/r-derived recipient. SC30 does not owe its SOS-constitutive phenotype to a mutation in the lexA gene (which codes the repressor of recA and other DNA damage-inducible genes), since it is lexA +. Each of the SC strains expresses SOS functions in a distinctively anomalous way. We show that the genetic basis for the differences in SOS expression among the SC strains is located at or very near the recA locus. We propose that resolution of genetic instability in this region, in the original recombinant, has altered the pattern of expression of SOS functions in the SC strains.  相似文献   

12.
The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5′–3′ exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5′–3′ exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo.  相似文献   

13.
J. Dimpfl  H. Echols 《Genetics》1989,123(2):255-260
The SOS response in Escherichia coli involves the induction of a multioperon regulatory system, which copes with the presence of DNA lesions that interfere with DNA replication. Induction depends on activation of the RecA protein to cleave the LexA repressor of SOS operons. In addition to inducible DNA repair, the SOS system produces a large increase in the frequency of point mutations. To examine the possibility that other types of mutations are induced as part of the SOS response, we have studied the production of tandem duplications. To avoid the complications of indirect effects of the DNA lesions, we have activated the SOS response by a constitutive mutation in the recA gene, recA730. The introduction of the recA730 mutation results in an increase in duplications in the range of tenfold or greater, as judged by two different criteria. Based on its genetic requirements, the pathway for induced duplication formation is distinct from the point mutation pathway and also differs from the major normal recombination pathway. The induction of pathways for both duplications and point mutations shows that the SOS system produces a broad mutagenic response. We have suggested previously that many types of mutations might be induced by severe environmental stress, thereby enhancing genetic variation in an endangered population.  相似文献   

14.
The deficiency in UV mutagenesis in uvrD3 recB21 strains of E. coli is almost completely overcome by constitutive activation of RecA protein and expression of the SOS system (by recA730 or 43 degrees C treated recA441 lexA71). When SOS was expressed but RecA protein not self-activated (recA441 lexA71 at 30 degrees C), uvrD3 recB21 still reduced UV mutagenesis at low doses. The uvrD3 recB21 combination is therefore inhibiting activation of RecA protein. It is suggested that the DNA unwinding activity of the products of the uvrD and recB genes may be involved in generating single-stranded DNA needed to activate RecA protein both for the cleavage of LexA repressor and for a further role in UV mutagenesis.  相似文献   

15.
Purification of an SOS repressor from Bacillus subtilis.   总被引:6,自引:5,他引:1       下载免费PDF全文
C M Lovett  Jr  K C Cho    T M O'Gara 《Journal of bacteriology》1993,175(21):6842-6849
We have identified in Bacillus subtilis a DNA-binding protein that is functionally analogous to the Escherichia coli LexA protein. We show that the 23-kDa B. subtilis protein binds specifically to the consensus sequence 5'-GAACN4GTTC-3' located within the putative promoter regions of four distinct B. subtilis DNA damage-inducible genes: dinA, dinB, dinC, and recA. In RecA+ strains, the protein's specific DNA binding activity was abolished following treatment with mitomycin C; the decrease in DNA binding activity after DNA damage had a half-life of about 5 min and was followed by an increase in SOS gene expression. There was no detectable decrease in DNA binding activity in B. subtilis strains deficient in RecA (recA1, recA4) or otherwise deficient in SOS induction (recM13) following mitomycin C treatment. The addition of purified B. subtilis RecA protein, activated by single-stranded DNA and dATP, abolished the specific DNA binding activity in crude extracts of RecA+ strains and strains deficient in SOS induction. We purified the B. subtilis DNA-binding protein more than 4,000-fold, using an affinity resin in which a 199-bp DNA fragment containing the dinC promoter region was coupled to cellulose. We show that B. subtilis RecA inactivates the DNA binding activity of the purified B. subtilis protein in a reaction that requires single-stranded DNA and nucleoside triphosphate. By analogy with E. coli, our results indicate that the DNA-binding protein is the repressor of the B. subtilis SOS DNA repair system.  相似文献   

16.
We isolated a new recF mutant of Escherichia coli K-12 by insertion of transposon Tn5 into the recF gene. This recF400::Tn5 allele displayed the same phenotypic characteristics as the classic recF143 mutation. By using Mu d(Ap lac) fusions, the induction of nine SOS genes, including recA, umuC, dinA, dinB, dinD, dinF, recN, and sulA, by UV irradiation and nalidixic acid was examined. Induction of eight genes by the two agents was impaired by recF400::Tn5 to different extents. The ninth fused SOS gene, dinF, was no longer inducible by UV when combined with recF400::Tn5. The generally impaired SOS response in recF strains did not result from weak induction of recA protein synthesis, since a recA operator-constitutive mutation did not alleviate the inhibitory effect of the recF mutation. The results suggest that recF plays a regulatory role in the SOS response. It is proposed that this role is to optimize the signal usage by recA protein to become a protease.  相似文献   

17.
A series of Escherichia coli K-12 AB1157 strains with normal and defective deoxyribonucleic acid repair capacity were more resistant to treatment with 8-methoxypsoralen (8-MOP) and near-ultraviolet light (NUV) than a comparable series of strains from the B/r WP2 family although sensitivities to 254-nm ultraviolet light were closely similar. The difference was most marked with strains deficient in both excision and postreplication repair (uvrA recA). The hypothesis that the internal level of 8-MOP was lower in K-12 than B/r uvrA recA derivatives was ruled out on the basis of fluorometric determinations of 8-MOP content and the similar inactivation curves for phage T3 treated intracellularly within the two strains. The demonstration of liquid holding recovery with AB2480 but not WP100 (both recA uvrA strains) and the somewhat greater resistance of the former strain to inactivation by captan revealed the presence in the K-12 strain of a deoxyribonucleic acid repair system independent of the recA(+) and uvrA(+) genes. The presence of this repair system did not, however, affect the survival of T3 phage treated with 8-MOP plus NUV and probably has a relatively small effect on survival of AB2480 under normal conditions. Experiments in which 8-MOP monoadducts were converted to cross-links by a second NUV exposure in the absence of 8-MOP indicated that the level of potentially cross-linkable monoadducts immediately after 8-MOP + NUV is about eightfold lower in K-12-than in B/r-derived strains. It is therefore suggested that the photoproduct yield in the former is well below that in the latter. In agreement with this is the observation that, during the first 10 min after treatment, deoxyribonucleic acid synthesis was just over five times more sensitive to inhibition by 8-MOP plus NUV in WP100 than in AB2480. We assume that 8-MOP in K-12 bacteria is hindered in some way from adsorbing to cellular (though not to phage T3) deoxyribonucleic acid. Consistent with this, 8-MOP has been shown to act as an inhibitor of a component of repair of 254-nm ultraviolet light damage in WP2 but not in AB1157.  相似文献   

18.
We quantitated the induction of the Bacillus subtilis Rec protein (the analog of Escherichia coli RecA protein) and the B. subtilis din-22 operon (representative of a set of DNA damage-inducible operons in B. subtilis) following DNA damage in Rec+ and DNA repair-deficient strains. After exposure to mitomycin C or UV irradiation, each of four distinct rec (recA1, recB2, recE4, and recM13) mutations reduced to the same extent the rates of both Rec protein induction (determined by densitometric scanning of immunoblot transfers) and din-22 operon induction (determined by assaying beta-galactosidase activity in din-22::Tn917-lacZ fusion strains). The induction deficiencies in recA1 and recE4 strains were partially complemented by the E. coli RecA protein, which was expressed on a plasmid in B. subtilis; the E. coli RecA protein had no effect on either induction event in Rec+, recB2, or recM13 strains. These results suggest that (i) the expression of both the B. subtilis Rec protein and the din-22 operon share a common regulatory component, (ii) the recA1 and recE4 mutations affect the regulation and/or activity of the B. subtilis Rec protein, and (iii) an SOS regulatory system like the E. coli system is highly conserved in B. subtilis. We also showed that the basal level of B. subtilis Rec protein is about 4,500 molecules per cell and that maximum induction by DNA damage causes an approximately fivefold increase in the rate of Rec protein accumulation.  相似文献   

19.
Constitutive expression of the SOS regulon in Escherichia coli recA730 strains leads to a mutator phenotype (SOS mutator) that is dependent on DNA polymerase V (umuDC gene product). Here we show that a significant fraction of this effect also requires DNA polymerase IV (dinB gene product).  相似文献   

20.
The recA genes of Proteus vulgaris, Erwinia carotovora, Shigella flexneri and Escherichia coli B/r have been isolated and introduced into Escherichia coli K-12. All the heterologous genes restore resistance to killing by UV irradiation and the mutagen 4-nitroquinoline-1-oxide in RecA- E. coli K-12 hosts. Recombination proficiency is also restored as measured by formation of Lac+ recombinants from duplicated mutant lacZ genes and the ability to propagate phage lambda derivatives requiring host recombination functions for growth (Fec-). The cloned heterologous genes increase the spontaneous induction of lambda prophage in lysogens of a recA strain. Addition of mitomycin C stimulates phage production in cells carrying the E. coli B/r and S. flexneri recA genes, but little or no stimulation is seen in cells carrying the E. carotovora and P. vulgaris recA genes. After treatment with nalidixic acid, the heterologous RecA proteins are synthesized at elevated levels, a result consistent with their regulation by the E. coli K-12 LexA repressor. Southern hybridization and preliminary restriction analysis indicate divergence among the coding sequences, but antibodies prepared against the E. coli K-12 RecA protein cross-react with the heterologous enzymes, indicating structural conservation among these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号