首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical performance of cancellous bone is characterized using experiments which apply linear poroelasticity theory. It is hypothesized that the anisotropic organization of the solid and pore volumes of cancellous bone can be physically characterized separately (no deformable boundary interactive effects) within the same bone sample. Due to its spongy construction, the in vivo mechanical function of cancellous or trabecular bone is dependent upon fluid and solid materials which may interact in a hydraulic, convective fashion during functional loading. This project provides insight into the organization of the tissue, ie., the trabecular connectivity, by defining the separate nature of this biphasic performance. Previous fluid flow experiments [Kohles et al., 2001, Journal of Biomechanics, 34(11), pp. 1197-1202] describe the pore space via orthotropic permeability. Ultrasonic wave propagation through the trabecular network is used to describe the solid component via orthotropic elastic moduli and material stiffness coefficients. The linear poroelastic nature of the tissue is further described by relating transport (fluid flow) and elasticity (trabecular load transmission) during regression analysis. In addition, an empirical relationship between permeability and porosity is applied to the collected data. Mean parameters in the superior-inferior (SI) orientation of cubic samples (n=20) harvested from a single bovine distal femur were the largest (p<0.05) in comparison to medial-lateral (ML) and anterior-posterior (AP) orientations: Apparent elastic modulus (2,139 MPa), permeability (4.65x10(-10) m2), and material stiffness coefficient (13.6 GPa). A negative correlation between permeability as a predictor of structural elastic modulus supported a parametric relationship in the ML (R2=0.4793), AP (R2=0.3018), and SI (R2=0.6445) directions (p<0.05).  相似文献   

2.
The use of acrylic polymers in infiltrating the porous bone structure is an emerging procedure for the augmentation of osteoporotic vertebrae. Although this procedure is employed frequently, it is performed based on empirical knowledge, and therefore, does not take into consideration the porosity-dependent permeability of human vertebral cancellous bone. The purpose of this study was to: (a). experimentally and theoretically investigate interdependence of the vertebral cancellous bone permeability and porosity, and (b). examine if the bone permeability of spinal cancellous bone can be predicted using bone mineral density measurements. If these relations can be established, they can be useful in optimizing the injection conditions for predicable cement infiltration. To determine the porosity-dependent and directional permeability, 34 bone cores-20 samples in the superior-inferior (SI) direction and 14 in the anterior-posterior (AP) direction-were cut from 20 lumbar vertebrae and infiltrated with silicone oil with a viscosity matching that of PMMA. The permeability of the cores was determined based on Darcy's law. The mean permeability of SI and AP cores was 4.45+/-1.72 x 10(-8) and 3.44+/-1.26 x 10(-8)m(2), respectively. An interesting finding of this study was that the permeability of the AP cores was approximately 78% of that of SI cores, though the porosity of the SI and AP cores taken from the same vertebra was approximately equal. In addition, we provided a theoretical model for the porosity-dependent permeability that accurately described non-linear dependency of the bone permeability and porosity in both directions. Although the relation of the bone permeability and porosity was established, bone mineral density was a weak predictor of the bone permeability. The experimental and theoretical results of this study can be used to understand polymer flow in cement infiltration procedures.  相似文献   

3.
It is well known that the periodic cycle {x(n)} of a periodically forced nonlinear difference equation is attenuant (resonant) if av(x(n)) < av(K(n))(av(x(n)) > av(K(n))),where {K ( n )} is the carrying capacity of the environment and av(t(n)) = (1/p)∑(p?1) (i=0) ti (arithmetic mean of the p-periodic cycle {t ( n )}). In this article, we extend the concept of attenuance and resonance of periodic cycles using the geometric mean for the average of a periodic cycle. We study the properties of the periodically forced nonautonomous delay Beverton-Holt model x(n+1) = r(n)x(n)/1 + (r(n?l) ? 1)x(n?k)/K(n?k), n= 0, 1, . . . , where {K ( n )} and {r ( n )} are positive p-periodic sequences; (K ( n )>0, r ( n )>1) as well as k and l are nonnegative integers. We will show that for all positive solutions {x ( n )} of the previous equation lim sup (n→∞) (∏(n?1)(i=0)xi)(1/n) ≤ ((∏(p?1)(i=0)ri)(1/p) ? 1)(∏(p?1)(i=0)(ri ? 1))(?1/p)(∏(p?1)(i=0)Ki)(1/p). In particular, in the case where {x(n)} is a p-periodic solution of the above equation (assuming that such solution exists) and r ( n )=r>1, the periodic cycle is g-attenuant, that is (∏(p?1)(i=0)x(i))(1/p)<(∏(p?1)(i=0)K(i))(p?1) Surprisingly, the obtained results show that the delays k and l do not play any role.  相似文献   

4.
Heterogeneity of the mechanical properties of demineralized bone   总被引:3,自引:0,他引:3  
Knowledge of the mechanical properties of the collagenous component of bone is required for composite modeling of bone tissue and for understanding the age- and disease-related reductions in the ductility and strength of bone. The overall goal of this study was to investigate the heterogeneity of the mechanical properties of demineralized bone which remains unexplained and may be due to differences in the collagen structure or organization or in experimental protocols. Uniaxial tension tests were conducted to measure the elastic and failure properties of demineralized human femoral (n = 10) and tibial (n = 13) and bovine humeral (n = 8) and tibial (n = 8) cortical bone. Elastic modulus differed between groups (p = 0.02), varying from 275 +/- 94 MPa (mean +/- SD) to 450 + 50 MPa. Similarly, ultimate stress varied across groups from 15 + 4.2 to 26 + 4.7 MPa (p = 0.03). No significant differences in strain-to-failure were observed between any groups in this study (pooled mean of 8.4 +/- 1.6%; p = 0.42). However, Bowman et al. (1996) reported an average ultimate strain of 12.3 +/- 0.5% for demineralized bovine humeral bone, nearly 40% higher than our value. Taken together, it follows that all the monotonic mechanical properties of demineralized bone can display substantial heterogeneity. Future studies directed at explaining such differences may therefore provide insight into aging and disease of bone tissue.  相似文献   

5.
Within the context of improving knowledge of the structure-function relations for trabecular bone for cyclic loading, we hypothesized that the S-N curve for cyclic compressive loading of trabecular bone, after accounting for differences in monotonic strength behavior, does not depend on either site or species. Thirty-five cores of fresh-frozen elderly human vertebral trabecular bone, harvested from nine donors (mean+/-S.D., age=74+/-17 years), were biomechanically tested in compression at sigma/E(0) values (ratio of applied stress to pre-fatigue elastic modulus) ranging from 0.0026 to 0.0070, and compared against literature data (J. Biomech. Eng. 120 (1998) 647-654) for young bovine tibial trabecular bone (n=37). As reported for the bovine bone, the number of cycles to failure for the human vertebral bone was related to sigma/E(0) by a power-law relation (r(2)=0.54, n=35). Quantitative comparison of these data against those reported for the bovine bone supported our hypothesis. Namely, when the differences in mean monotonic yield strain between the two types of bone were accounted for, a single S-N curve worked well for the pooled data (r(2)=0.75, n=72). Since elderly human vertebral and young bovine tibial trabecular bone represent two very different types of trabecular bone in terms of volume fraction and architecture, these findings suggest that the dominant failure mechanisms in trabecular bone for cyclic loading occur at the ultrastructural level.  相似文献   

6.
Two "blood substitutes," a diaspirin cross-linked human hemoglobin [bis(3,5 dibromosalicyl)fumarate, DBBF-Hb] and a bovine polymerized hemoglobin (PolyHbBv), advanced to clinical trials, are used in this study. Previously, we have shown that injection of DBBF-Hb into the rat circulation produces venular leakage and intestinal epithelial disruption. The purpose of this study was to determine whether PolyHbBv, currently approved for veterinary use in the United States, shows similar effects. In anesthetized Sprague-Dawley rats, the mesenteric microvasculature was perfused with DBBF-Hb (n = 6), PolyHbBv (n = 5), cyanomet Hb (CNmet-DBBF-Hb), or HEPES-buffered saline with 0.5% bovine serum albumin (HBS-BSA) (controls, n = 7) for 10 min, followed by FITC-albumin for 3 min, and then fixed for microscopy. For DBBF-Hb, the mean leak number per micrometer venule length [2.41 +/- 0.33 (+/-SE) x 10(-3)] was significantly greater than for PolyHbBv (0.53 +/- 0.14 x 10(-3)), CNmet-DBBF-Hb (0.36 +/- 0.14 x 10(-3)), and HBS-BSA (0.12 +/- 0.08 x 10(-3)) (P < 0.01). Corresponding quantities for leak area were 0.10 +/- 0.03, 0.010 +/- 0.003, 0.005 +/- 0.003, and 0.02 +/- 0.02 microm(2)/microm. In rats injected with DBBF-Hb (n = 8), intestinal epithelial integrity was significantly compromised compared with those injected with PolyHbBv (n = 5) or saline (n = 6). These results indicate that intravascular PolyHbBv produces significantly less disruption of the intestinal exchange barrier than does DBBF-Hb, probably because the heme is not so easily oxidized.  相似文献   

7.
Until now, there has been no in vitro model that duplicates the environment of bone marrow. The purpose of this study was to analyze proliferation and differentiation of human bone marrow stromal cells (hBMSC) under the influence of continuous perfusion and cyclic mechanical loading. hBMSC of seven individuals were harvested, grown in vitro, and combined. 10(6) hBMSC were seeded on a bovine spongiosa disc and incubated in a bioreactor system. Cell culture was continued using three different conditions: Continuous perfusion (group A), 10% cyclic compression at 0.5Hz (group B) and static controls (group C). After 24h, 1, 2, and 3 weeks, we determined cell proliferation (MTS-assay) and osteogenic differentiation (osteocalcin ELISA, Runx2 mRNA). Tenascin-C mRNA was quantified to exclude fibroblastic differentiation. In groups A and B, proliferation was enhanced after 2 weeks (48.6+/-19.6x10(3) (A) and 44.6+/-14.3 x 10(3) cells (B)) and after 3 weeks (46.6+/-15.1 x 10(3) (A) and 44.8+/-10.2 x 10(3) cells (B)) compared with controls (26.3+/-10.8 x 10(3) (2 weeks) and 17.1+/-6.5 x 10(3) cells (3 weeks), p<0.03). Runx2 mRNA was upregulated in both stimulated groups after 1, 2, and 3 weeks compared to control (group A, 1 week: 5.2+/-0.7-fold; p<0.01, 2 weeks: 4.4+/-1.9-fold; p<0.01, 3 weeks: 3.8+/-1.7-fold; p=0.013; group B, 1 week: 3.6+/-1.1-fold, p<0.01, 2 weeks: 4.2+/-2.2-fold, p<0.01; 3 weeks: 5.3+/-2.7-fold, p<0.01). hBMSC stimulated by cyclic compression expressed the highest amount of osteocalcin at all time points (1 week: 294.5+/-88.4 mg/g protein, 2 weeks: 294.4+/-73.3mg/g protein, 3 weeks: 293.1+/-83.6 mg/g protein, p0.03). The main stimulus for cell proliferation in a 3-dimensional culture of hBMSC is continuous perfusion whereas mechanical stimulation fosters osteogenic commitment of hBMSC. This study thereby contributes to the understanding of physical stimuli that influence hBMSC in a 3-dimensional cell culture system.  相似文献   

8.
Hydraulic resistance (HR) was measured for ten intact human lumbar vertebrae to further understand the mechanisms of fluid flow through porous bone. Oil was forced through the vertebral bodies under various volumetric flow rates and the resultant pressure was measured The pressure-flow relationship for each specimen was linear. Therefore, HR was constant with a mean of 2.22 +/- 1.45 kPa*sec/ml. The mean permeability of the intact vertebral bodies was 4.90x10(-10) +/- 4.45x10(-10) m2. These results indicate that this methodology is valid for whole bone samples and enables the exploration of the effects of HR on the creation of high-speed fractures.  相似文献   

9.
10.
Human knee specimens were subjected to anterior-posterior, medial-lateral, varus-valgus, and torsional displacement tests. Loads were recorded for the intact joint and for the joint with all soft tissues cut except for the cruciate ligaments. The effect of condylar interference was determined for anterior-posterior, medial-lateral, and torsional displacements. The variation in load with flexion angle was considerable for medial-lateral (0-90-deg flexion) displacements, and less for varus-valgus (0-45-deg flexion) displacements. The cruciates were found to carry almost the entire anterior-posterior load; they carried a significant percentage of the medial-lateral load which varied considerably with flexion angle. A small, but not insignificant percentage of the varus-valgus load was carried by the cruciates and the variations with flexion angle were small. In torsion, the cruciates resisted only internal rotation. In the tested displacement ranges, condylar interference had a small effect on the medial-lateral load but did not affect anterior-posterior or torsional loads.  相似文献   

11.
To study the nature of adrenergic stimulation of ions and water reabsorption in the newt renal distal tubule, stationary microperfusion of the nephron and electron probe analysis were used. After application of norepinephrine (NE 10(-6) M) to the tubule surface, the fractional reabsorption of fluid increased from 15.0 +/- 3.1 to 41.30 +/- 10.4% (n = 7, p < 0.01), of Na+ from 69.30 +/- 6.6 to 79.10 +/- 7.5% (p < 0.05), Cl- from 63.30 +/- 7.6 to 72.40 +/- 7.9% (p < 0.05). Instead of secretion (control), there was reabsorption of K+. Fractional reabsorption of Ca2+ decreased from 51.00 +/- 6.0 to 43.00 +/- 7.0% (p < 0.05). The nonspecific alpha-adrenergic antagonist dibenamine 10(-6) M completely inhibited the effect of NE while, under the action of propranolol (2 x 10(-6) M) NE increased ion and water reabsorption significantly. When applied alone, or with NE, the specific alpha 2-adrenoblocker idazoxan, 2 x 10(-6) M, did not interfere with reabsorption in the distal tubule. At the same time, under the action of alpha 1-adrenoblocker prazosin 2 x 10(-6) M NE, increased the fractional reabsorption of fluid from 24.10 +/- 3.4 to 44.40 +/- 4.0% (n = 6, p < 0.001). These results serve as evidence that there exist specific alpha 2-adrenoceptors in the newt distal tubule the stimulation of which increases membrane permeability of the distal tubule to water, Na+, K+, Cl-, but not to Ca2+.  相似文献   

12.
A tetrapolar method to measure electrical conductivity of cartilage and bone, and to estimate the thickness of articular cartilage attached to bone, was developed. We determined the electrical conductivity of humeral head bovine articular cartilage and subchondral bone from a 1- to 2-year-old steer to be 1.14+/-0.11 S/m (mean+/-sd, n =11) and 0.306+/-0.034 S/m, (mean+/-sd, n =3), respectively. For a 4-year-old cow, articular cartilage and subchondral bone electrical conductivity were 0.88+/-0.08 S/m (mean+/-sd, n =9) and 0.179+/-0.046 S/m (mean+/-sd, n =3), respectively. Measurements on slices of cartilage taken from different distances from the articular surface of the steer did not reveal significant depth-dependence of electrical conductivity. We were able to estimate the thickness of articular cartilage with reasonable precision (<20% error) by injecting current from multiple electrode pairs with different inter-electrode distances. Requirements for the precision of this method to measure cartilage thickness include the presence of a distinct layer of calcified cartilage or bone with a much lower electrical conductivity than that of uncalcified articular cartilage, and the use of inter-electrode distances of the current injecting electrodes that are on the order of the cartilage thickness. These or similar methods present an attractive approach to the non-destructive determination of cartilage thickness, a parameter that is required in order to estimate functional properties of cartilage attached to bone, and evaluate the need for therapeutic interventions in arthritis.  相似文献   

13.
Evidence indicates that leg weakness in older adults is associated with decreased control of balance. The gender-specific implications of strength training on control of balance in older men and women remains unknown. This study examined the initial adaptations to 12 weeks of low-volume, single-set-to-failure strength training and its effect on quadriceps strength and control of multidirectional balance in previously untrained older men (n = 11) and women (n = 11) 59-83 years of age. Leg strength increased 23-30% (p < 0.001) across genders; however, the effect on balance varied between genders. No significant changes were noted in the women, whereas 37% (p < 0.014) more sway in the medial-lateral direction was noted in the men, with no change in the anterior-posterior direction. These results demonstrate that this training protocol may not be effective for improving balance and may lead to worsening of balance in older men.  相似文献   

14.
BACKGROUND: Two studies were designed to determine whether a single dose (80 mg) of the angiotensin II receptor blocker (ARB), valsartan, alters insulin sensitivity in obese, non-hypertensive subjects with and without Type 2 diabetes. METHODS: Insulin sensitivity (S(I)), glucose effectiveness (S(G)), and acute insulin response (AIR(0-10 min)) were measured by means of a 3-hour insulin-modified frequently sampled intravenous glucose tolerance test (FSIVGTT) before and after a single dose of valsartan. Study 1: obese, normotensive non-diabetic male subjects (n = 12), mean (SD) age 37.2 +/- 11.2 years, BMI 32.8 +/- 6.8 kg/m (2); Study 2: obese, normotensive Type 2 diabetic patients (n = 12), mean age 55.7 +/- 6.9 years, BMI 35.0 +/- 6.8 kg/m (2)/l. Both studies were randomised, double-blind, placebo-controlled, single-dose crossover group studies involving subjects in two study days, two weeks apart. After fasting samples were taken, a 300 mg/kg iv glucose bolus was injected at 0 min, and 0.05 U/kg iv insulin was given 20 min later. Blood samples for analysis of glucose and insulin were taken throughout the 3-hour study period. RESULTS: Study 1 (non-diabetic subjects) S(I) 2.81 vs. 2.63 x 10 (-4) min (-1) per microU/ml (p = 0.54), S(G) 0.020 vs. 0.020 min (-1) (p = 0.90), AIR(0-10) min 3305 vs. 3450 microU/min/ml (p = 0.71); Study 2 (patients with type 2 diabetes) S(I) 0.59 vs. 0.85 x 10 (-4) min (-1) per microU/ml (p = 0.15), S(G) 0.013 vs. 0.014 min (-1) (p = 0.71), AIR(0-10) min 65 vs. 119 microU/min/ml (p = 0.14), placebo vs. valsartan, respectively. CONCLUSION: In obese, non-hypertensive non-diabetic and Type 2 diabetic subjects a single dose of valsartan does not alter insulin sensitivity.  相似文献   

15.
The purpose of this study was to assess the relationship of the heart rate deflection point (HRDP) to the ventilatory threshold (VT) in trained cyclists. Twenty-one endurance-trained cyclists (mean +/- SD: Vo(2)max = 67.6 +/- 4.7 ml x kg x min(-1)) completed a maximal cycle ergometer test of volitional fatigue using a ramped protocol. Ventilatory variables (Ve, Vo(2), Vco(2)) and power were measured online with averages reported every 20 seconds. Heart rate (HR) was recorded every 20 seconds using a Polar monitor. VT was calculated using the excess CO(2) elimination curve. The first derivative of a logistic growth curve fit to the HR-power data produced the HRDP. No significant differences (p > 0.01) existed between HR values at HRDP (171.7 +/- 9.6 b x min(-1)) and VT (169.8 +/- 9.9 b x min(-1)) or between Vo(2) values at HRDP (53.6 +/- 4.2 ml x kg x min(-1)) and VT (52.2 +/- 4.8 ml x kg x min(-1)). But power values at HRDP (318.7 +/- 30.7 W) were significantly different (p < 0.01) from those at VT (334.8 +/- 36.7 W). There were significant relationships between HRDP and VT for the physiological variables of HR (r = 0.92, p < 0.001), Vo(2) (r = 0.72, p < 0.001), and power (r = 0.77, p < 0.001). These findings indicate that HR and Vo(2) at HRDP are not significantly different from the values at VT in trained cyclists. HR values derived from HRDP may be used to set parameters for training intensity. Variability in the speed/power-HRDP relationship across detrained/trained states may be used to evaluate training programs.  相似文献   

16.
Our previous study demonstrated that firm attachment of leukocytes to microvessel walls does not necessarily increase microvessel permeability (Am J Physiol Heart Circ Physiol 283: H2420-H2430, 2002). To further understand the mechanisms of the permeability increase associated with leukocyte accumulation during acute inflammation, we investigated the direct relation of reactive oxygen species (ROS) release during neutrophil respiratory burst to changes in microvessel permeability and endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) in intact microvessels. ROS release from activated neutrophils was quantified by measuring changes in chemiluminescence. When isolated rat neutrophils (2 x 10(6)/ml) were exposed to formyl-Met-Leu-Phe-OH (fMLP, 10 microM), chemiluminescence transiently increased from 1.2 +/- 0.2 x 10(4) to a peak value of 6.7 +/- 1.0 x 10(4) cpm/min (n = 12). Correlatively, perfusing individual microvessels with fMLP-stimulated neutrophils in suspension (2 x 10(7)/ml) increased hydraulic conductivity (L(p)) to 3.7 +/- 0.4 times the control value (n = 5) and increased endothelial [Ca(2+)](i) from 84 +/- 7 nM to a mean peak value of 170 +/- 7 nM. In contrast, perfusing vessels with fMLP alone did not affect basal L(p). Application of antioxidant agents, superoxide dismutase, vitamin C, or an iron chelator, deferoxamine mesylate, attenuated ROS release in fMLP-stimulated neutrophils and abolished increases in L(p). These results indicate that release of ROS from fMLP-stimulated neutrophils increases microvessel permeability and endothelial [Ca(2+)](i) independently from leukocyte adhesion and the migration process.  相似文献   

17.
Li D  Huang H  Li X  Li X 《Bio Systems》2003,72(3):203-207
Recently, several DNA computing paradigms for NP-complete problems were presented, especially for the 3-SAT problem. Can the present paradigms solve more than just trivial instances of NP-complete problems? In this paper we show that with high probability potentially deleterious features such as severe hairpin loops would be likely to arise. If DNA strand x of length n and the 'complement' of the reverse of x have l match bases, then x forms a hairpin loop and is called a (n,l)-hairpin format. Let gamma=2l/n. Then gamma can be considered as a measurement of the stability of hairpin loops. Let p(n,l) be the probability that a n-mer DNA strand is a (n,l)-hairpin format, and q(n,l)((m)) be the probability that m ones are chosen at random from 4(n) n-mer oligonucleotides such that at least one of the m ones is a (n,l)-hairpin format. Then, q(n,l)((m))=1-(1-p(n,l))(m)=mp(n,l). If we require q(n,l)((m))相似文献   

18.
Fetal bovine serum (FBS) is a commonly used medium supplement with variable and undefined composition, which presents problems in culture of pluripotent stem cells. The purpose of this study was to determine if FBS can be replaced with Knockout Serum Replacement (KSR), a defined medium supplement, and to examine the effects of FBS and growth factors on short- and long-term culture of pig embryonic germ cells (EGC). No significant differences were observed in total and mean colony areas in primary cultures between FBS- and KSR-supplemented medium (421 x 10(3) mum(2) vs. 395 x 10(3) microm(2), p = 0.68, n = 11, and 6375 microm(2) vs. 6407 microm(2), p = 0.885, respectively). Total and mean colony areas were significantly larger in KSR-supplemented medium compared with medium supplemented with KSR and growth factors (505 x 10(3) microm(2) vs. 396 x 10(3) microm(2), p = 0.016, n = 12, and 8769 microm(2) vs. 6513 microm(2), p = 0.003, respectively). The cultures proliferated for significantly higher numbers of passages in FBS-supplemented medium and in medium supplemented with KSR and growth factors compared with medium containing KSR alone (31.1 vs. 21.9, p = 0.004, n = 10, and 35.5 vs. 21.6, p = 002, n = 10, respectively). Porcine EGC maintained in serum-free conditions were positive for pluripotent stem cell markers, maintained stable karyotypes for up to 54 passages, and were capable of differentiating in vitro into cells from the three primary germ layers. These results will help improve and standardize culture of pluripotent stem cells in the pig.  相似文献   

19.
Sporozoites were excysted from oocysts of Hammondia heydorni obtained from a naturally-infected dog and inoculated into monolayer cultures of bovine pulmonary artery endothelial cells (CPA), Madin-Darby bovine kidney (MDBK) cells, bovine monocytes (M617), or ovine monocytes (WOMO). Sporozoites penetrated all four cell lines and underwent asexual reproduction by endodyogeny (as determined by electron microscopy) to form cyst-like structures at four to nine days after sporozoite inoculation (DAI). At 4-10 DAI, considerably more zoites were harvested from M617 cultures (80.1 x 10(6) zoites) than from CPA (17.4 x 10(6], MDBK (47.3 x 10(6], and WOMO (53.5 x 10(6]. Little or no parasite multiplication occurred at 10-16 DAI. Zoites harvested at 7 DAI and transferred to freshly prepared cultures did not penetrate cells nor develop further.  相似文献   

20.
The role of nitric oxide (NO) in microvascular permeability remains unclear because both increases and decreases in permeability by NO synthase (NOS) inhibitors have been reported. We sought to determine whether blood-borne constituents modify venular permeability responses to the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). We assessed hydraulic conductivity (L(p)) of pipette-perfused rat mesenteric venules before and after exposure to 10(-4) M L-NAME. In the absence of blood-borne constituents, L-NAME reduced L(p) by nearly 50% (from a median of 2.4 x 10(-7) cm x s(-1) x cmH(2)O(-1), n = 17, P < 0.001). The reduction in L(p) by L-NAME was inhibited by a 10-fold molar excess of L-arginine but not D-arginine (n = 6). In a separate group of venules, blood flow was allowed to resume during exposure to L-NAME. In vessels perfused by blood during L-NAME exposure, L(p) increased by 78% (from 1.4 x 10(-7) cm x s(-1) x cmH(2)O(-1), n = 10, P < 0.01). N(G)-nitro-D-arginine methyl ester did not affect L(p) in either of the two groups. These data imply that NO has direct vascular effects on permeability that are opposed by secondary changes in permeability mediated by blood-borne constituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号