首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 148 毫秒
1.
《植物生态学报》2018,42(12):1179
精确模拟冠层气孔导度(GS)对于评估区域蒸散具有重要意义。该研究选择两种常见的人工阔叶树种尾叶桉(Eucalyptus urophylla, 外来种)和木荷(Schima superba, 本地种)作为研究对象, 利用K?stner法和修订的Penman-Monteith公式计算冠层平均气孔导度(分别定义为GS1GS2)。研究还分析了环境因子对冠层脱耦联系数(Ω)的影响, 并用其来评价两种方法模拟的冠层气孔导度的合理性。结果表明, 两个树种冠层气孔导度均与气象条件耦合较好(尾叶桉: Ω = 0.10 ± 0.03, 木荷: Ω = 0.17 ± 0.03)。主成分分析显示, 光合有效辐射(PAR)以及水汽压亏缺(D)显著影响Ω的大小, 而风速(u)的影响较小。单因素分析则发现各环境因子与Ω之间的相关性并不显著。边界线分析表明DPAR的增加使得Ω最终趋向于一个与树种有关的稳定值(木荷≈ 0.20, 尾叶桉≈ 0.05), 而Ωu的增加呈幂指数下降。与木荷相比, 尾叶桉具有更高的气孔导度(尾叶桉和木荷的GS2年平均值分别为(33.42 ± 9.37) mmol·m -2·s -1和(23.40 ± 2.03) mmol·m -2·s -1), 并且尾叶桉和木荷的GS1GS2的线性拟合斜率分别为0.92 (R 2 ≈ 0.70)和0.98 (R 2 ≈ 0.76) , 表明GS1GS2高估了冠层气孔导度。另外, GS1GS2对水汽压亏缺的敏感性与参比气孔导度(GSiref, D = 1 kPa时的气孔导度)的比值Pi与Ω紧密相关。根据统计, 尾叶桉和木荷的GS1估计值在Ω = 0.05-0.15 (83.1%的数据)和0.10-0.20 (47.8%的数据)之间时是相对可靠的。  相似文献   

2.
蒸腾导度模型是衡量冠层-大气界面水汽输出的重要阻力模型,研究其特征及对环境因子的响应,为揭示森林冠层-大气界面水汽输出阻力机制提供理论依据。以首都圈森林生态系统定位观测研究站侧柏林为研究对象,采用TDP热探针法测定侧柏林树干液流密度,同步监测光合有效辐射、饱和水汽压差、气温、风速等主要环境因子,分析冠层导度和空气动力学导度的动态变化,构建冠层-大气蒸腾导度模型并模拟,明确冠层-大气蒸腾导度对各环境因子的响应关系。结果表明:蒸腾导度季节变化表现为非生长季与冠层导度趋势一致,生长季与空气动力学导度趋势一致,全年均为单峰趋势。冬季蒸腾导度与冠层导度保持较稳定差值(45 mol m^(-2 )s-1左右),其他季节蒸腾导度与冠层导度、空气动力学导度的最大差值,均在各季节冠层导度、空气动力学导度的峰值水平。全年日均蒸腾导度冬季最大(86.92 mol m^(-2 )s-1),其他季节较小且稳定(40—50 mol m^(-2 )s-1之间)。在非生长季各环境因子对蒸腾导度的影响与对冠层导度的影响基本一致,温度为主要影响因子(r=-0.198),其他环境因子影响较小(r<0.1);在生长季中风速为主要影响因子(r=0.488),光合有效辐射(r=0.228)和饱和水汽压差(r=-0.299)的影响明显升高,温度的影响降低(r=0.114)。蒸腾导度模型较好的模拟了冠层-大气界面侧柏蒸腾不同季节的变化规律,阐明了各环境因子和冠层导度、空气动力学导度对蒸腾导度的影响机制,证实在生长季应重视空气动力学导度对蒸腾的影响。  相似文献   

3.
马占相思林冠层气孔导度对环境驱动因子的响应   总被引:16,自引:4,他引:12  
利用Granier热消散探针在2003年10月测定了广东鹤山丘陵地马占相思林14株样树的树干液流,同时监测林冠上方的光合有效辐射、空气湿度和气温,结合树木的形态和林分的结构特征,计算马占相思的整树蒸腾(E)、林分总蒸腾(Et)以及冠层平均气孔导度(gc),分析树形特征与整树水分利用的关系、冠层气孔导度对光合有效辐射(PAR)和空气水汽压亏缺(D)的响应.结果表明,整树蒸腾与胸径(P<0.0001)、边材面积(P<0.0001)和冠幅(P=0.0007)以自然对数的形式、与树高(P=0.014)以幂函数的形式呈现显著正相关.冠层气孔导度最大值(gcmax)随D的上升呈对数函数下降(P<0.0001),对光合有效辐射的响应则呈双曲线函数增加(P<0.0001).液流测定系统能提供连续和准确的整树和林分蒸腾速率值,经严格数学推导公式计算,最终可求出冠层气孔导度,是研究森林水分利用与环境因子相互关系的有效方法.  相似文献   

4.
整树水力导度协同冠层气孔导度调节森林蒸腾   总被引:7,自引:2,他引:5  
赵平 《生态学报》2011,31(4):1164-1173
冠层气孔导度决定森林的蒸腾效率,它对驱动水汽移动的水汽应力的响应受树木水力结构的影响,并随水汽压亏缺上升和水力导度下降而降低,维持水势在最低阈值之上,避免出现水力灾变,调控冠层蒸腾。由于叶形和树冠结构的特点,部分脱耦联反映了湿润地区阔叶林冠层与大气的水汽交换特征,单纯以气孔导度的变化难以完整描述水分通量的调节规律,因而,需要考虑冠层气孔导度与水力导度协同控制冠层蒸腾的潜在机理。通过整合叶片气孔气体交换、树干液流、冠层微气象和其他环境因子的野外观测值,估测不同时间尺度的森林冠层气孔导度与大气的脱耦联系数和变异范围,以基于树干液流的冠层蒸腾,结合叶片/土壤水势梯度计算的水力导度,分析水力导度影响冠层气孔导度响应水汽压亏缺的敏感性,可以揭示和阐明水力导度和冠层气孔导度联合调节森林蒸腾的机理,对准确估测全球变化背景下森林对水资源利用的潜在生态效应有明显的理论意义。  相似文献   

5.
叶片气孔是植物进行水汽交换的通道, 影响着植物的蒸腾和光合作用。然而叶片气孔行为受环境条件和树种类型的影响, 不同树种冠层气孔导度对环境因子响应的差异性, 以及在生长季不同时期叶片气孔对冠层蒸腾的调节作用是否会发生改变, 仍不清楚。该研究目的是通过探究各环境因子对不同树种冠层气孔导度的相对贡献率以及叶片气孔对冠层蒸腾的调节作用, 为深入了解植物水分利用状况和山区森林经营提供参考依据。于2018年生长季以北京八达岭国家森林公园内的58年生油松(Pinus tabuliformis)和39年生元宝槭(Acer truncatum)为研究对象, 利用热扩散技术对其树干液流进行连续监测, 并同步监测环境因子。利用彭曼公式计算冠层气孔导度(Gs)。主要结果: (1)油松和元宝槭日间Gs在日、月时间尺度上存在明显差异。5-7月油松和元宝槭日动态Gs均随饱和水汽压差(VPD)和太阳辐射(GR)的增加呈上升趋势, 上升持续时间比8月和9月长; 在月尺度上, 随着VPDGR的降低和土壤湿度(VWC)的升高, Gs从5月到9月整体上升。(2)利用增强回归树法分析得到VWCVPDGs的贡献率最大, 其次是GR、气温和风速。VWCVPD对油松Gs的贡献率分别为66.4%和17.4%, 对元宝槭Gs的贡献率分别为54.8%和21.0%。(3)油松和元宝槭的dGs/dlnVPD值与参考冠层气孔导度之间的斜率均显著高于0.6, 气孔调节作用相对较强。综上所述, 气孔对环境因子的响应在树种以及生长季不同时期之间存在差异, 为防止水分过度散失, 两树种在不同土壤水分条件下均通过严格的气孔调节控制蒸腾量。  相似文献   

6.
朱昊阳  李洪宇  王晓蕾  姜婷  孙林  罗毅 《生态学报》2022,42(22):9130-9142
油松是黄土高原重要的造林树种,模拟其冠层气孔导度和蒸腾对区域水量平衡计算和人工林可持续经营具有重要意义。基于2015—2018年TDP(Thermal dissipation probes)方法所测得液流数据,分析了黄土高原地区油松冠层平均气孔导度(gc)与冠层蒸腾(Tr)的变化特征与影响因素,并采用Penman-Monteith公式和Jarvis型气孔导度模型模拟了其gc和Tr的变化过程,结果表明:(1)该地区油松gc和Tr日内变化均呈现单峰型,日均蒸腾耗水量为(1.25±0.57) mm/d,生长季(4—10月)总蒸腾耗水量均值为195.47 mm。(2)gc的日内变化受太阳辐射(Rad)驱动(偏相关系数为0.65),当Rad高于300 W/m2时,驱动作用减弱;gc的日内变化受水汽压亏缺(VPD)控制(偏相关系数为-0.41),随VPD的增加而降低;gc的日际变化受土壤水分限制(偏相关系数为0.46),当根区相对有效含水率(RE...  相似文献   

7.
应用Granier热消散探针,长期监测华南地区荷木、大叶相思和柠檬桉林不同径级样树的树干液流,结合同步观测的气象数据,求算冠层气孔导度(gc),并分析其对环境因子的响应方式及敏感性.结果表明: 不同季节荷木林日间平均gc显著高于大叶相思和柠檬桉(P<0.05)(除3月外).在干季和湿季,gc与光合有效辐射(PAR)呈现对数正相关关系(P<0.001),湿季gc对PAR响应比干季更敏感.gc与水汽压亏缺(VPD)在干湿季均呈现对数负相关关系(P<0.001),同样在湿季表现出更高的敏感性.湿季gc与VPD的偏相关系数高于干季,VPD对气孔行为的调控作用在湿季更为明显.随着土壤含水量的降低,gc对VPD的敏感性下降,荷木和柠檬桉林下降的幅度大于大叶相思林,荷木和柠檬桉林下降的幅度相当.通过综合分析gc对环境因子(PAR和VPD)的敏感性及其对土壤含水量变化的响应规律,发现乡土树种荷木作为植被恢复树种比外来引种的大叶相思和柠檬桉更为适宜.  相似文献   

8.
罗紫东  关华德  章新平  刘娜  张赐成  王婷 《生态学报》2016,36(13):3995-4005
冠层气孔导度(g_c)是许多陆面过程模型中的重要参数,提高对冠层气孔导度的模拟精度非常重要。以环境因子阶乘的Jarvis形式的模型是气孔导度模型中的典型代表,但研究中不同的环境因子有不同的响应方程和参数。研究认为不同的响应方程有不同的模拟效果,并通过比较各环境因子的不同响应方程组合的模型的模拟效果来确定最优的g_c模型。以桂花树为例,测定了树干液流、茎水势和微气象环境,用Penman-Monteith(PM)方程反推计算冠层气孔导度并检验不同方程组合的16种模型。模型的参数用DiffeRential Evolution Adaptive Metropolis(DREAM)模型优化。结果表明这种方法能够有效地找到各环境因子最优的响应方程,从而最优化g_c模型。优化的g_c模型很好地模拟了桂花树冠层气孔导度的变化,尤其是对干旱的响应,模拟值与PM计算值的相关系数和均方根误差分别为0.803和0.000623 m/s。同时也证明了模型中温度函数f(T)1的现象并非个例,由于温度(T)和水汽压亏缺(D)常是高度相关的,建议在以后的g_c模型研究中应把T和D看成一个影响因子,但f(T)1的这种现象是否具有全球性还有待进一步研究证实。  相似文献   

9.
华北落叶松冠层平均气孔导度模拟及其对环境因子的响应   总被引:2,自引:0,他引:2  
冠层气孔导度是生态水文学研究中的一个重要参数,研究其对环境因子的响应,能为建立机理性的森林蒸腾模型提供理论依据.本文利用热扩散探针,于2005年5-9月,测定了六盘山叠叠沟小流域华北落叶松人工林树干液流及其同步的环境因子,计算了林分冠层平均气孔导度(gc)并构建了Jarvis形式的冠层平均气孔导度模型,分析了gc对光合有效辐射(PAR)、空气水汽压亏缺(DVP)和土壤相对有效含水率(REW)的响应.结果表明:该模型能有效地计算gc的日变化特征,计算与观测的gc决定系数R2为0.76 (n=952).gc对各环境因子有不同响应关系,并表现为非线性特征.其中PAR是gc的驱动因子,当PAR<0.35 mmol·m-2·s-1时驱动作用明显,大于此值则驱动作用变小;DVP是gc的限制因子,随着DVP的增加gc降低;REW=41%是gc对土壤水分响应的一个关键阈值,当REW>41%时,土壤水分对gc的影响较小,当REW<41%时,土壤水分则成为gc的限制因子.  相似文献   

10.
冠层气孔导度(gs)是衡量冠层-大气界面水汽通量的重要生物学常数,研究其特征及对环境因子的响应,能为开展森林冠层水汽交换过程的机理性研究提供理论依据.于2014年利用SF-L热扩散式探针测定了侧柏的树干液流密度(Js),同步监测光合有效辐射(PAR)、饱和水汽压差(VPD)、气温(T)等环境因子,计算侧柏的冠层气孔导度特征并分析其对各环境因子的响应.结果表明: 侧柏液流密度的日变化总体呈双峰曲线,生长季高于非生长季,且胸径越大液流密度越大;冠层气孔导度日变化与单位叶面积冠层蒸腾(EL)趋势相近,均呈双峰曲线,生长季的冠层气孔导度和蒸腾较非生长季略高.侧柏冠层气孔导度与空气温度呈抛物线关系,在10 ℃左右冠层气孔导度达到峰谷;光合有效辐射以400 μmol·m-2·s-1为界,小于该阈值两者呈正相关关系,大于该阈值则冠层气孔导度受其影响较小;与饱和水汽压差呈负对数函数关系,随饱和水汽压差增大而逐渐降低.较高的空气温度和光合有效辐射、较低的饱和水汽压差有利于侧柏形成较大的冠层气孔导度,进而促进冠层蒸腾.  相似文献   

11.
华南荷木林冠层气孔导度对水汽压亏缺的响应   总被引:1,自引:0,他引:1  
冠层气孔导度(Gs)是量化气孔在冠层尺度水平上表现的参数,能够表征森林冠层表面水汽和能量交换的动态.本研究利用Granier树干液流测定系统,连续监测华南地区荷木林的树干液流,通过尺度转换和扩展获得冠层蒸腾速率,结合微气象观测值,以Pen-man-Monteith公式计算了Gs,并比较不同土壤水分条件下Gs对水汽压亏缺的响应.结果显示,Gs与气孔气体交换方法实测的叶片气孔导度(gs)日变化相似,单位转换数值大小与实测gs数量级一致.Gs对水汽压亏缺的响应在干季和湿季有明显差别:(1)在土壤水分充足的湿季(土壤含水量θ >33%),Gs对水汽压亏缺的响应更敏感(偏相关系数-0.316),而在干季(θ<23%)则对光合有效辐射的响应更敏感(偏相关系数0.885).(2)荷木林冠层-大气脱耦联系数(Ω)在湿季接近l,干季则较湿季小,说明湿季叶片的界面层较厚,水汽压亏缺对Gs影响较小,而光合有效辐射是控制Gs的主要环境因子.  相似文献   

12.
A coupled model of stomatal conductance, photosynthesis and transpiration   总被引:18,自引:1,他引:17  
A model that couples stomatal conductance, photosynthesis, leaf energy balance and transport of water through the soil–plant–atmosphere continuum is presented. Stomatal conductance in the model depends on light, temperature and intercellular CO2 concentration via photosynthesis and on leaf water potential, which in turn is a function of soil water potential, the rate of water flow through the soil and plant, and on xylem hydraulic resistance. Water transport from soil to roots is simulated through solution of Richards’ equation. The model captures the observed hysteresis in diurnal variations in stomatal conductance, assimilation rate and transpiration for plant canopies. Hysteresis arises because atmospheric demand for water from the leaves typically peaks in mid‐afternoon and because of uneven distribution of soil matric potentials with distance from the roots. Potentials at the root surfaces are lower than in the bulk soil, and once soil water supply starts to limit transpiration, root potentials are substantially less negative in the morning than in the afternoon. This leads to higher stomatal conductances, CO2 assimilation and transpiration in the morning compared to later in the day. Stomatal conductance is sensitive to soil and plant hydraulic properties and to root length density only after approximately 10 d of soil drying, when supply of water by the soil to the roots becomes limiting. High atmospheric demand causes transpiration rates, LE, to decline at a slightly higher soil water content, θs, than at low atmospheric demand, but all curves of LE versus θs fall on the same line when soil water supply limits transpiration. Stomatal conductance cannot be modelled in isolation, but must be fully coupled with models of photosynthesis/respiration and the transport of water from soil, through roots, stems and leaves to the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号