首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dwarf palms and cyclanths strongly reduce Neotropical seedling recruitment   总被引:4,自引:0,他引:4  
Yung-Ho Wang  Carol Augspurger 《Oikos》2004,107(3):619-633
Recruitment limitation, which occurs when species either fail to reach regeneration sites or the number of suitable regeneration sites is limited, has been proposed as an important factor that controls population dynamics and species coexistence in tropical moist forests. Dwarf palms in some Neotropical forests dominate the understory strata, and their umbrella-like architecture may intensify understory shade and make the site less suitable for seedling regeneration. In this study we surveyed seedlings under dwarf palms in four habitats at La Selva Biological Station, Costa Rica. We compared seedling recruitment in both 2001 and 2002 at non-palm microsites vs microsites under 1) tall dwarf palms, 2) short dwarf palms, and 3) short palms surrounded by dwarf palms. Light environments at non-palm and under-palm sites were quantified with hemispherical photos. Seedling growth, survivorship, density, and species richness all differed significantly among microsites, and were all greatest at non-palm sites and lowest at dense palm sites. Overall, seedling growth, survivorship, density, and species richness were 30%, 50%, 50%, and 40%, respectively, less at under-palm than at non-palm sites. The main restriction by dwarf palms occurred on post-cotyledonous and woody seedlings. Percent canopy openness differed among microsites, and was greatest at non-palm sites and lowest at dense palm sites. However, seedling responses were only weakly correlated with percent canopy openness. These results revealed significant reduction in seedling recruitment under individual dwarf palms, with greatest negative effects where a palm was surrounded by palms. Dwarf palms occur at high density (2611 individuals/ha) and cover 21% of the understory in the four habitats (alluvium, residual flat area, residual slope area, swamp) of the primary forest. Therefore, this negative impact by individual dwarf palms is significant at the landscape scale as well, based on the great dwarf palm density and coverage in the four habitats.  相似文献   

2.
Recognition of spatial heterogeneity of fire at fine scales is emerging, particularly in ecosystems characterized by frequent, low-intensity fire regimes. Differences in heat flux associated with variation in fuel and moisture conditions create microsites that affect survivorship and establishment of species. We studied the mechanisms by which fire affects seed germination using exposure of seeds to fire surrogates (moist and dry heat). Tolerance (survival) and germination responses of six perennial, herbaceous legume species common to the fire-prone longleaf pine–wiregrass ecosystem of the southeastern USA were examined the following heat treatments. Moist heat was more effective in stimulating germination than dry heat flux for most species examined. We also compared intrinsic seed properties (relative seed coat hardness, percent moisture, and seed mass) among species relative to their heat tolerance and heat-stimulated germination responses. Seed coat hardness was closely associated with the probability of dry and moist heat-stimulated germination. Variation among species in optimal germination conditions and degree of heat tolerance likely reflects selection for specific microsites among a potentially diverse suite of conditions associated with a low-intensity fire regime. Fire-stimulated germination, coupled with characteristics of seed dormancy and longevity in the soil, likely fosters favorable recruitment opportunities in restoration situations aimed at reintroducing a frequently prescribed burn regime to a relict longleaf pine site. In a restoration context in which externally available seed pool inputs are limited, this regenerative mechanism may provide a significant source of recruitment for vegetative recovery in a post-fire landscape.  相似文献   

3.
The herbaceous ground cover of the longleaf pine ecosystem harbors the highest plant species richness in North America, with up to 50 species per square meter, but the mechanisms that regulate this diversity are not well understood. In this system, variability in seedling recruitment events may best explain the extremely high small-scale species richness and its relationship to soil moisture and system net primary productivity. To understand the potential mechanistic controls on species richness, we used a long-term resource manipulation study across a natural soil moisture gradient to assess environmental controls on seedling recruitment. We considered the availability of resources to be an indicator of seedling safe-site supply, and also manipulated seed availability to examine the relative importance of recruitment limitations on seedling diversity. We found that water availability regulated the number of species in the seedling community regardless of the underlying natural moisture gradient, and that this effect may result from differential responses of seedling guilds to resource availability. Water supply was more important than seed supply in determining seedling establishment, suggesting that appropriate sites for regeneration are a factor limiting seedling success. This is the first study that shows that the episodic supply of microsites for recruitment could influence species richness in the highly threatened and biodiverse longleaf pine savanna.  相似文献   

4.
In arid ecosystems, recruitment dynamics are limited by harsh environmental conditions and greatly depend on the net outcome of the balance between facilitation and competition. This outcome can change as a consequence of degradation caused by livestock overgrazing. Also, distinct plant species may show a differential response to a common neighbour under the same environmental conditions. Therefore, ecosystem degradation could affect the net balance of plant-plant interactions, which can also depend on the functional traits of potential nurse species. The aim of this study is to assess the influence of alternative degradation states on (i) the density of seedlings of perennial species emerging in four microsite types, and on (ii) the relative interaction intensity (RII) between seedlings and potential nurses belonging to three functional types (deep- and shallow-rooted shrubs, and tussock grasses). During three years, we recorded seedling density of perennial species in four alternative degradation states in grass-shrubby steppes from northwestern Patagonia. The density of emerged seedlings of perennial species decreased sharply as degradation increased, showing non-linear responses in most microsites. Seedling density underneath deep-rooted shrubs was higher than underneath shallow-rooted shrubs and tussock grasses. Also, deep-rooted shrubs were the only functional type that recorded seedling emergence in highly degraded states. Deep-rooted shrubs had facilitative effects on the seedlings emerging and surviving underneath them, independently of ecosystem degradation. In contrast, RII between shallow-rooted shrubs and recently emerged seedlings, switched from positive effects in the less degraded states, to negative effects in the most degraded state. Tussock grasses recorded the weakest intensity of facilitative interactions with recently emerged seedlings, switching to competitive interactions as degradation increased. Our results suggest that species with key functional traits should be considered in management and restoration plans for rangelands with different degradation levels, since they have a strong influence in the net outcome of plant-plant interactions and in the recruitment dynamics of arid ecosystems.  相似文献   

5.
Cadiz  Geofe O.  Cawson  Jane G.  Duff  Thomas J.  Penman  Trent D.  York  Alan  Farrell  Claire 《Plant Ecology》2021,222(8):877-895

Knowing the abundance of different plant species provides insights into the properties of vegetation communities, such as flammability. Therefore, a fundamental goal in ecology is identifying environmental conditions affecting the abundance of plant species across landscapes. Water and light are important environmental moderators of plant growth, and by extension, abundance. In the context of understanding forest flammability, the abundance of a flammable plant species in terms of its cover or biomass can shape the flammability of the whole vegetation community. We conducted a glasshouse experiment to determine the impact of drought and shade on growth, biomass allocation and leaf morphology of forest wiregrass Tetrarrhena juncea R.Br., a rhizomatous perennial grass. When it is abundant, this species is known to contribute substantially to the flammability of eucalypt forest understories (via both ignitability and combustibility). Contrasting hypotheses in the literature predict that drought can have a weaker, stronger, or independent (uncoupled) impact on plant growth when light is limiting. We used a randomized complete block design with ten treatments from the combination of two water levels (drought, well-watered) and five light levels (100%, 80%, 60%, 40%, 20%). Drought and shade were found to have independent effects on wiregrass growth, biomass allocation, and leaf morphology, supporting the uncoupled hypothesis. Growth showed greater plasticity in response to drought, while biomass allocation and leaf morphology showed greater plasticity in response to shade. Our results suggest that wiregrass is more likely to be abundant in terms of its cover and biomass when water is not limiting. Under these conditions, the increased wiregrass abundance could create a window of increased flammability for the forest ecosystem.

  相似文献   

6.
Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems–mangroves, island maritime forests, and mainland coastal terrestrial forests–where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests.  相似文献   

7.
Beckage B  Clark JS 《Oecologia》2005,143(3):458-469
Seed and seedling predation may differentially affect competitively superior tree species to increase the relative recruitment success of poor competitors and contribute to the coexistence of tree species. We examined the effect of seed and seedling predation on the seedling recruitment of three tree species, Acer rubrum (red maple), Liriodendron tulipifera (yellow poplar), and Quercus rubra (northern red oak), over three years by manipulating seed and seedling exposure to predators under contrasting microsite conditions of shrub cover, leaf litter, and overstory canopy. Species rankings of seedling emergence were constant across microsites, regardless of exposure to seed predators, but varied across years. A. rubrum had the highest emergence probabilities across microsites in 1997, but Q. rubra had the highest emergence probabilities in 1999. Predators decreased seedling survival uniformly across species, but did not affect relative growth rates (RGRs). Q. rubra had the highest seedling survivorship across microsites, while L. tulipifera had the highest RGRs. Our results suggest that annual variability in recruitment success contributes more to seedling diversity than differential predation across microsites. We synthesized our results from separate seedling emergence and survival experiments to project seedling bank composition. With equal fecundity assumed across species, Q. rubra dominated the seedling bank, capturing 90% of the regeneration sites on average, followed by A. rubrum (8% of sites) and L. tulipifera (2% of sites). When seed abundance was weighted by species-specific fecundity, seedling bank composition was more diverse; L. tulipifera captured 62% of the regeneration sites, followed by A. rubrum (21% of sites) and Q. rubra (17% of sites). Tradeoffs between seedling performance and fecundity may promote the diversity of seedling regeneration by increasing the probability of inferior competitors capturing regeneration sites.  相似文献   

8.
Willows usually establish on wet substrates with fine sediments at sites that are created by large disturbances, but suitable microsites are spatially and temporally limited. Thus, we hypothesized that willow seeds are selectively dispersed to suitable microsites, such as those with a wet substrate, rather than unsuitable microsites, such as those with a dry substrate, with seedling establishment mediated by the cottony hairs attached to seeds (directed dispersal). To test our hypothesis, we compared several recruitment-related traits, including buoyancy, germination, and trapping at favorable microsites, in seeds of the riparian willows Salix sachalinensis and S. integra with and without cottony hairs in laboratory and field experiments. In both field and laboratory experiments, more seeds with cottony hairs were trapped in water and wet sand than in dry sand, in which no seeds of either species germinated. These results indicate that cottony hairs facilitate the recruitment of seeds to microsites favorable for seed germination and help seeds avoid unfavorable microsites. On the water surface, 17.6% of S. sachalinensis seeds and 68.0% S. integra seeds with cottony hairs floated for more than 6 days, whereas all seeds without cottony hairs sank immediately after being placed on the water surface. These results suggest that cottony hairs facilitate long-distance dispersal via flowing water and also help avoid germination under water, where willow seedlings fail to establish. Seeds of the two willow species were released from the cottony hairs and germinated immediately after the seeds were placed on wet sand, but not after placement on water or dry sand. These results suggest that the seeds are released from the cottony hairs when the hairs become wet and the seeds are striking to a suitable microsite for seedling establishment, such as wet sand. In riparian willows, the cottony hairs promote directed dispersal by moving seeds to discrete and predictable microsites where the seedling establishment is disproportionately high.  相似文献   

9.
Regeneration and expansion of Aristida beyrichiana and Aristida stricta (wiregrass) populations in remaining fire‐maintained Pinus palustris (longleaf pine) stands of the southeastern United States has become an objective of land managers. Although growing‐season fire is required for successful wiregrass seed production, studies examining naturally occurring wiregrass seedling dynamics are few. This study investigates how seedling survivorship is affected by season of burn, seedling size, time since germination, and proximity to adult plants. Restoration at this research site was begun in 1992 with the planting of containerized longleaf pine and wiregrass seedlings. Study plots were established in November 1997 after a growing‐season prescribed fire (June 1996) that resulted in successful seed production and seedling recruitment. Burn treatment plots included (1) no burn (control), (2) fire in the dormant season of the first year after germination (March 1998), (3) fire in the growing season of the first year after germination (August 1998), and (4) fire in the growing season of the second year after germination (July 1999). Seedling mortality increased with growing season burning and close proximity to planted adults. Natural seedling recruitment continued into the second year after initial seed‐drop in all plots, which verifies that wiregrass seed banking occurs for a minimum of 2 years after seed drop. Where wiregrass management objectives include population expansion, seedling recruits should be allowed 1 to 2 years post‐germination without growing season fire for successful establishment.  相似文献   

10.
  1. Tree regeneration is a key process for long‐term forest dynamics, determining changes in species composition and shaping successional trajectories. While tree regeneration is a highly stochastic process, tree regeneration studies often cover narrow environmental gradients only, focusing on specific forest types or species in distinct regions. Thus, the larger‐scale effects of temperature, water availability, and stand structure on tree regeneration are poorly understood.
  2. We investigated these effects in respect of tree recruitment (in‐growth) along wide environmental gradients using forest inventory data from Flanders (Belgium), northwestern Germany, and Switzerland covering more than 40 tree species. We employed generalized linear mixed models to capture the abundance of tree recruitment in response to basal area, stem density, shade casting ability of a forest stand as well as site‐specific degree‐day sum (temperature), water balance, and plant‐available water holding capacity. We grouped tree species to facilitate comparisons between species with different levels of tolerance to shade and drought.
  3. Basal area and shade casting ability of the overstory had generally a negative impact on tree recruitment, but the effects differed between levels of shade tolerance of tree recruitment in all study regions. Recruitment rates of very shade‐tolerant species were positively affected by shade casting ability. Stem density and summer warmth (degree‐day sum) had similar effects on all tree species and successional strategies. Water‐related variables revealed a high degree of uncertainty and did not allow for general conclusions. All variables had similar effects independent of the varying diameter thresholds for tree recruitment in the different data sets.
  4. Synthesis: Shade tolerance and stand structure are the main drivers of tree recruitment along wide environmental gradients in temperate forests. Higher temperature generally increases tree recruitment rates, but the role of water relations and drought tolerance remains uncertain for tree recruitment on cross‐regional scales.
  相似文献   

11.
Plant recruitment is limited by dispersal, if seeds cannot arrive at potential recruitment sites, and by establishment, due to a low availability of safe sites for recruitment. Seed-sowing experiments, scarcely applied along gradients of landscape alteration, are very useful to assess these limitations. Habitat loss and fragmentation may foster recruitment limitations by affecting all the processes from seed dispersal to seedling establishment. In this study, we perform a seed-sowing experiment to disentangle the importance of dispersal and establishment limitations in different stages of recruitment of the perennial herb Primula vulgaris in fragmented forests of the Cantabrian Range (Northwestern Spain). We evaluated the influence of ecological gradients resulting from habitat loss and fragmentation (modifications of habitat amount at the landscape and microhabitat scales, changes in the species’ population size, changes in seed predation and seedling herbivory) on seedling emergence, survival and early growth. We found strong evidence of dispersal limitation, as seedling emergence was very low in experimental replicates where no seeds were added. This limitation was independent of landscape alterations, as we found no relation with any of the ecological gradients studied. Establishment limitations at the germination phase were also unrelated to ecological gradients, probably because these limitations are more related to fine-scale environmental gradients. However, further monitoring revealed that seedling survival after summer and winter periods and seedling growth were conditioned by landscape alteration, as we found effects of habitat amount at the landscape and microhabitat scales, of presence of populations of P. vulgaris and of seedling herbivory. These effects were complex and sometimes opposite to what can be expected for adult plants, revealing the presence of different requirements between life stages.  相似文献   

12.
Abstract. Seedling abundance at four microsites (open fynbos, beneath emergent fynbos shrubs, beneath thicket, and beneath forest) was determined at three coastal dune landscapes, located along a gradient of increasing summer rainfall and where fire-dependent fynbos was the predominant vegetation. At all sites thicket seedlings were most common beneath emergent fynbos shrubs and under thicket clumps; seedlings of forest species were most abundant at forest microsites although some individuals were recorded beneath thicket. Very few thicket seedlings were observed in open fynbos. Birds play a keystone role in facilitating establishment of the fleshy fruit-bearing thicket flora. Seedling abundance at microsites of different thicket and forest species was generally unrelated to fruit abundance. Germination success of most species was highest under shaded conditions; soil organic content had no effect on germination. Removal of pulp and birdingestion enhanced the germination, relative to untreated controls, of two out of three species tested. A simple Markov model predicted a gradual increase in cover of the thicket and forest component and a gradual decline in fynbos under a ‘normal’ (20-yr interval) fire regime simulated over 10 cycles. Although inter-fire seedling establishment under emergent fynbos shrubs is important in the initial colonisation of fynbos by obligate resprouting thicket shrubs, these species persist and expand by vegetative recruitment after and between fires, respectively. In the prolonged absence of fire, the endemic-rich and fire-dependent fynbos flora would be replaced by species-poor forest and thicket.  相似文献   

13.
Seed predation may reduce recruitment in populations that are limited by the availability of seeds rather than microsites. Fires increase the availability of both seeds and microsites, but in plants that lack a soil- or canopy-stored seed bank, post-fire recruitment is often delayed compared to the majority of species. Pyrogenic flowering species, such as Telopea speciosissima, release their non-dormant seeds more than 1 year after fire, by which time seed predation and the availability of microsites may differ from that experienced by plants recruiting soon after fire. I assessed the role of post-dispersal seed predation in limiting seedling establishment after fire in T. speciosissima, in southeastern Australia. Using a seed-planting experiment, I manipulated vertebrate access to seeds and the combined cover of litter and vegetation within experimental microsites in the 2 years of natural seed fall after a fire. Losses to vertebrate and invertebrate seed predators were rapid and substantial, with 50% of seeds consumed after 2 months in exposed locations and after 5 months when vertebrates were excluded. After 7 months, only 6% of seeds or seedlings survived, even where vertebrates were excluded. Removing litter and vegetation increased the likelihood of seed predation by vertebrates, but had little influence on losses due to invertebrates. Microsites with high-density vegetation and litter cover were more likely to have seed survival or germination than microsites with low-density cover. Recruitment in pyrogenic flowering species may depend upon the release of seeds into locations where dense cover may allow them to escape from vertebrate predators. Even here, conditions suitable for germination must occur soon after seed release for seeds to escape from invertebrate predators. Seed production will also affect recruitment after any one fire, while the ability of some juvenile and most adult plants to resprout after fire buffers populations against rapid declines when there is little successful recruitment.  相似文献   

14.
Abstract Three experiments were conducted to verify if an increase in environmental stress level would affect the interactions between two species of nurse shrubs and seedlings of Aspidosperma quebracho‐blanco. This is a mesic species with a generalist distribution over an extensive environments gradient. The relationship between Larrea divaricata and seedlings of A. quebracho‐blanco was studied in two contrasting soils, a silty loam soil with higher surface clay content and a sandy loam soil. The effect of seasonal variability of rainfall on the initial establishment of seedlings under the shade of L. divaricata was evaluated in three consecutive years. The effect of nurse plant shade was tested comparing two shrub species with different types of leaf life span (sclerophyllous‐evergreen and leguminous‐deciduous). The natural establishment of A. quebracho‐blanco depended on shaded microsites, but not on the type of shade provided by different nurse shrubs. Emergence and initial establishment depended on interactions of soil type and seasonal rainfall variation with nurse plants. The importance of facilitation increased with clay soil (CS). Sandy soil was ‘less humid’ than CS under shrub shade. However, establishment success depends on opportune even rainfall distribution in interaction with nurse plant presence.  相似文献   

15.
Theory predicts that in more stressful environments, positive plant-plant interactions should be more important than negative ones. For instance, in arid and semiarid regions, amelioration of soil drought produced by the shade of established plants could facilitate establishment of other species, in spite of light reduction. However, this theory has not been tested widely in the context of plant invasion. In this paper we evaluated the hypothesis that in a semiarid ecosystem of central Chile, the native tree, Lithrea caustica, should facilitate through positive shading effects, the seedling establishment of two widely planted and invasive forestry species, Pinus radiata and Eucalyptus globulus. We assessed the seedling establishment examining two processes: seedling recruitment (including germination) and subsequent seedling survival. We sowed seeds (to assess recruitment) and planted 8 months old seedlings (to assess seedling survival) of each exotic species under Lithrea patches, open sites and under an artificial shade mimicking Lithrea shading. The study was repeated in a north-facing and a south-facing slope in the study area located in a xeric zone within the distribution range of plantations of these species in central Chile. Our results show that in a north-facing slope Lithrea had positive effects on recruitment of both species, which was produced by shading. These effects were counteracted by negative effects on seedling survival but through a different mechanism, which suggests that Lithrea would have no significant effect on the whole seedling establishment process of Pinus radiata nor Eucalyptus globulus in this habitat. In turn, in a south-facing slope Lithrea had no significant effect on recruitment but had a negative effect on seedling survival, which was not produced by shading. This suggests that in this habitat Lithrea has a negative effect on the seedling establishment of these exotic species. Our results suggest that the effect of the native Lithrea caustica on the seedling establishment of these exotic species is dependent upon the life-cycle phase (recruitment or seedling survival) and habitat even within the same semiarid ecosystem. In contrast to the expected positive effects Lithrea is unlikely to facilitate seedling establishment of these exotic species in this area, and in fact in some habitats this effect could be negative. However, our results also suggest that a common mechanism proposed to resist invasion in forest ecosystems such as shading, probably is not sufficient to inhibit invasion in a semiarid region.  相似文献   

16.
Aristida beyrichiana (wiregrass) is increasingly being planted in restoration projects across the southeastern coastal plain, with little focus on genetic differences among populations across the region. Local and regional population differentiation for establishment and growth traits were examined in common garden and reciprocal transplant experiments. Seeds from up to 20 plants from each of seven populations were collected in northern and central Florida sites that encompassed gradients of soils, hydrology, and temperature. Reciprocal seed transplants using three of the common garden populations were conducted in two consecutive years. In the common garden, significant population differences were seen in seed weight, seedling emergence and survival, tiller height, number of tillers, the relationship between tiller number and tiller height, and flowering. Variation among maternal families was seen in tiller number and in the relationship between tiller number and tiller height. The reciprocal transplant study did not detect either local adaptation to sites of origin or consistent superiority of one source population or planting site in seedling establishment. These results suggest that the probability of seedling establishment is primarily dependent on environmental conditions rather than genetic differences. Genetic variation for traits related to fitness (e.g., tiller number) may be retained within populations because phenotypically plastic growth responses of seedlings to environmental variation buffer genetic variation against the action of selection. But despite the lack of evidence for genetic influences on initial establishment in wiregrass, our common garden study suggests genetic differences among populations. This result, when combined with previous results indicating local adaptation in later life stages of wiregrass, suggests that restoration efforts involving this species should use local seed sources from sites with similar soil and hydrological conditions.  相似文献   

17.
Several studies across species have linked leaf functional traits with shade tolerance. Because evolution by natural selection occurs within populations, in order to explain those interspecific patterns it is crucial to examine variation of traits associated with shade tolerance and plant fitness at an intraspecific scale. In a southern temperate rainforest, two climbing plant species coexist but differ in shade tolerance. Whereas Luzuriaga radicans is most abundant in the shaded understory, L. polyphylla typically occurs in intermediate light environments. We carried out an intraspecific approach to test the hypothesis of differential selection patterns in relation to shade tolerance in these congeneric species. The probability of showing reproductive structures increased with specific leaf area (SLA) in L. polyphylla, and decreased with dark respiration in L. radicans. When reproductive output of fertile individuals was the fitness variable, we detected positive directional selection on SLA in L. polyphylla, and negative directional selection on dark respiration and positive directional selection on leaf size in L. radicans. Total light radiation differed between the microsites where the Luzuriaga species were sampled in the old-growth forest understory. Accordingly, L. radicans had a lower minimum light requirement and showed fertile individuals in darker microsites. L. radicans showed lower dark respiration, higher chlorophyll content, and greater leaf size and SLA than L. polyphylla. Results suggest that in more shade-tolerant species, established in the darker microsites, selection would favor functional traits minimizing carbon losses, while in less shade-tolerant species, plants displaying leaf traits enhancing light capture would be selected.  相似文献   

18.
Understanding the regeneration niche of species may allow us to gain insight into how communities are structured. In deserts, the regeneration niche is usually related to spaces beneath shrubs where shade cast by shrubs creates microenvironments that benefit seedlings and where even small amounts of rain may favour germination and establishment. Shade and water may also interact with different types of soils. However, species may have different requirements for germination and seedling survival. We could expect that shrub species with different drought tolerances exhibit different responses to the combination of these factors. We ask if responses of dominant species of the Atacama Desert to abiotic factors (shade, water and soil type) are related to their drought tolerance, a topic not exhaustively explored in shrubs growing in true deserts. We conducted two factorial experiments. The first one was designed to evaluate how shade (microhabitat) in combination with water may affect germination (emergence) and early survival. In the second experiment, we assessed the influence of shade in relation to soil type. Each species responded distinctively to the three variables under study, but in general, their emergence responses were more influenced by water (more water, greater emergence) than by microhabitat or soil type. Survival was influenced both by microhabitat and by water and was higher under shade and abundant water. Soil type affected only one of our species in terms of emergence. Species responses in general depended on their tolerance to stress. In one species, there was indication of a seed–seedling conflict. Our results show similar species responses to environmental constraints but also more or less unique responses that are related to their tolerance to drought and which may ultimately permit species coexistence. We found that shade may not be important for germination but may be crucial for survival in dry years.  相似文献   

19.
Abstract. Population dynamics, mortality factors, growth and dry weight changes in Quercus floribunda seedlings were studied to determine the implication of sun and shade microsites and the role of mast years on regeneration and maintenance of oak forests in Kumaun Himalaya. The number of seedlings was significantly greater at the sun microsites, but seedling survival was not, as ground herbage clearance at sun microsites accounted for 53.5% mortality. Insect herbivores (e.g. acorn worm) were also one of the major mortality factors. At both microsites, most mortality was encountered between June and August. The initial seedling height at sun microsites was significantly lower compared to shade microsites. Seedlings at sun microsites were superior in terms of number of leaves and peak dry weight. Dry mass allocation in seedling components and root:shoot ratio was similar at both microsites. The study shows the importance of sun microsites and of masting in the potential for regeneration and expansion of Q. floribunda forests.  相似文献   

20.
Seedlings of six major European temperate forest tree species (Fagus sylvatica, Acer pseudoplatanus, Quercus robur, Taxus baccata, Abies alba, Pinus sylvestris) were exposed to 360, 500, and 660 μL CO2 L?1 in the understorey of a 120‐y‐old forest over two growing seasons. Seedlings rooted in the natural forest soil within 36 open‐top chambers (12 OTCs per CO2 treatment), each with a different known quantum flux density (QFD) ranging from 0.36 to 2.16 mol m?2 d?1 (= 0.8% to 4.8% of full sun). In contrast to a frequent assumption the natural CO2 concentration in the understorey is close to the ambient concentration in the free atmosphere during daytime. The CO2‐effect on seedling growth differed greatly among species and was strongly codetermined by microsite‐specific QFD. Biomass production in the deep‐shade tolerant species Fagus and Taxus increased by 73% and 37% under elevated CO2 in low QFD microsites but was not significantly different among CO2‐treatments in high QFD microsites. The less shade‐tolerant species Acer, Quercus, and Abies showed no significant response to elevated CO2 in low QFD microsites, but increased their biomass by 39%, 25%, and 55% in high QFD microsites. In the shade‐intolerant Pinus, seedling survival was too low for a safe conclusion. Our data showed that the largest relative responses to increasing CO2 occurred at a comparatively small increase from 360 to 500 μL L?1 with only small and non‐significant changes with a further increase to 660 μL L?1. Subtle shifts in the availability of light can totally reverse interspecific differences in the CO2 response. Given these different responses, we conclude that increasing atmospheric CO2 is likely to induce changes in species composition of temperate forests due to altered chances of recruitment. However, these shifts will depend on light patterns in the understorey, and thus on canopy structure, disturbance patterns and forest management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号