首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Streptococcus mutans is known as a key causative agent of dental caries. It metabolizes dietary carbohydrate to produce acids which reduce the environmental pH leading to tooth demineralization. The ability of this bacterium to tolerate acids coupled with acid production, allows its effective colonization in the oral cavity leading to the establishment of highly cariogenic plaque. For this reason, S. mutans is the only bacterium found in significantly higher numbers than other bacteria in the dental plaque. The aim of this study was to evaluate the effect of crude extract and methanolic fraction of Z. officinale against S. mutans virulence properties.

Results

We investigated in vitro and in vivo activity of crude extract and methanolic fraction at sub- MIC levels against cariogenic properties of S. mutans. We found that these extracts strongly inhibited a variety of virulence properties which are critical for its pathogenesis. The biofilm formation in S. mutans was found to be reduced during critical growth phases. Furthermore, the glucan synthesis and adherence was also found to be inhibited. Nevertheless, the insoluble glucan synthesis and sucrose dependent adherence were apparently more reduced as compared to soluble glucan synthesis and sucrose- independent adherence. Biofilm architecture inspected with the help of confocal and scanning electron microscopy, showed dispersion of cells in the treated group as compared to the control. The Quantitative Real Time PCR (qRT-PCR) data had shown the down regulation of the virulence genes, which is believed to be one of the major reasons responsible for the observed reduction in the virulence properties. The incredible reduction of caries development was found in treated group of rats as compared to the untreated group which further validate our in vitro data.

Conclusion

The whole study concludes a prospective role of crude extract and methanolic fraction of Z. officinale in targeting complete array of cariogenic properties of S. mutans, thus reducing its pathogenesis. Hence, it may be strongly proposed as a putative anti- cariogenic agent.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-014-0320-5) contains supplementary material, which is available to authorized users.  相似文献   

2.
AIMS: The purpose of the present study was to examine whether sublethal concentrations of Helichrysum italicum extract could affect some of the cariogenic properties of Streptococcus mutans. METHODS AND RESULTS: We studied the antibacterial activity of H. italicum (ethanolic extract) against oral streptococci (Strep. mutans ATCC 35668, Strep. salivarius ATCC 13419 and Strep. sanguis ATCC 10556) and its influence on cell-surface hydrophobicity, in vitro sucrose-dependent adherence to glass surface and cellular aggregation of Strep. mutans. The results indicate that all streptococci were susceptible to ethanolic extract with minimum inhibitory concentration (MIC) values of 31.25-62.50 microg x ml(-1). Sub-MIC concentrations of H. italicum (7.81-31.25 microg x ml(-1)) reduced the hydrophobicity and the adherence (almost 90%) to glass surface of Strep. mutans. The aggregation in the presence of dextran T2000 was also affected. CONCLUSION: The inhibitory activity of H. italicum extract on Strep. mutans is worthy of further study. SIGNIFICANCE AND IMPACT OF THE STUDY: There is considerable interest in the use of natural compounds as alternative methods to control undesirable micro-organisms.  相似文献   

3.
The aim of this study was to evaluate the influence of the crude and active solvent fraction of Trachyspermum ammi on S. mutans cariogenicity, effect on expression of genes involved in biofilm formation and caries development in rats. GC-MS was carried out to identify the major components present in the crude and the active fraction of T. ammi. The crude extract and the solvent fraction exhibiting least MIC were selected for further experiments. Scanning electron microscopy was carried out to observe the effect of the extracts on S. mutans biofilm. Comparative gene expression analysis was carried out for nine selected genes. 2-Isopropyl-5-methyl-phenol was found as major compound in crude and the active fraction. Binding site of this compound within the proteins involved in biofilm formation, was mapped with the help of docking studies. Real-time RT-PCR analyses revealed significant suppression of the genes involved in biofilm formation. All the test groups showed reduction in caries (smooth surface as well as sulcal surface caries) in rats. Moreover, it also provides new insight to understand the mechanism influencing biofilm formation in S. mutans. Furthermore, the data suggest the putative cariostatic properties of T. Ammi and hence can be used as an alternative medicine to prevent caries infection.  相似文献   

4.
AIMS: The aim of the present study was to investigate the anti-Streptococcus mutans activity and the in vitro effects of subminimal inhibitory concentrations of guaijaverin isolated from Psidium guajava Linn. on cariogenic properties of Strep. mutans. METHODS AND RESULTS: Bioautography-directed chromatographic fractionation, yield biologically active compound, quercetin-3-O-alpha-l-arabinopyranoside (guaijaverin), from crude methanol extract of P. guajava. Growth-inhibitory activity of the compound against Strep. mutans of both clinical and type strain cultures was evaluated. The anti-Strep. mutans activity of the guaijaverin was found to be bacteriostatic, both heat and acid stable and alkali labile with the minimum inhibitory concentration (MIC) of 4 mg ml(-1) for MTCC 1943 and 2 mg ml(-1) for CLSM 001. The sub-MIC concentrations (0.0078-2 mg ml(-1)) of the guaijaverin were evaluated for its cariogenic properties such as acid production, cell-surface hydrophobicity, sucrose-dependent adherence to glass surface and sucrose-induced aggregation of Strep. mutans. CONCLUSIONS: The active flavonoid compound, quercetin-3-O-alpha-l-arabinopyranoside (guaijaverin) demonstrated high potential antiplaque agent by inhibiting the growth of the Strep. mutans. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated the new growth-inhibitory compound guaijaverin against Strep. mutans and led to the acceptance of traditional medicine and natural products as an alternative form of health care.  相似文献   

5.
The caries inhibitory effects of GOS-sugar in vitro and in rat experiments   总被引:6,自引:0,他引:6  
The caries inhibitory activity of GOS-sugar (panose- and maltose-rich sugar mixture) was examined and compared with that of sucrose, maltose, or glucose in in vitro and in vivo experiments. Streptococcus mutans MT8148R (serotype c) and Streptococcus sobrinus 6715 (g) did ferment GOS-sugar and produce acid in a similar way as with maltose and glucose. However, GOS-sugar could not be a substrate for the glucosyltransferases (GTases) of these mutans streptococci to synthesize the water-insoluble glucan. Also, it significantly inhibited not only the synthesis of water-insoluble glucan from sucrose by the crude GTases but also the sucrose-dependent adherence of these cells to a glass surface. In particular, adherence of growing cells of 6715 was markedly inhibited by the presence of GOS-sugar. GOS-sugar was found to induce significant but minimal dental caries in SPF rats infected with either MT8148R or 6715. Furthermore, the replacement of half of the dietary sucrose content with GOS-sugar resulted in a significant reduction of caries development in rats infected with strain 6715.  相似文献   

6.
Badet C  Quero F 《Anaerobe》2011,17(1):19-22
Honey has been used since ancient times and more recently, for the healing of wounds and against infectious diseases. The aim of our study was to investigate the effect of two manuka honeys showing different potencies of their antibacterial activity, on potentially pathogenic oral bacteria. The antimicrobial activity was examined by determining the MIC and MBC using the macro dilution broth technique. The effect on the adherence was tested on growing cells of Streptococcus mutans on a glass surface and on a multi-species biofilm grown on saliva-coated hydroxyapatite discs. As expected, the antibacterial activity of manuka 1 (with higher potency of antibacterial activity) was the most important. The two tested honeys weakly inhibited the adherence of S.mutans cells to a glass surface at sub-MIC concentration. Manuka 1 showed a total inhibition of multi-species biofilm at the concentration of 200 μg/ml manuka 2 inhibited biofilm formation weakly at the concentration of 200 μg/ml but firmly at the concentration of 500 μg/ml. Our findings suggest that manuka honeys might be able to reduce oral pathogens within dental plaque. These two honeys appear to be able to control dental biofilm deposit.  相似文献   

7.
Studies on the seeds of Annona squamosa yielded a novel lipoxygenase inhibitor fatty acid ester, (+) - annonlipoxy (1). Compound 1 was screened for its enzyme inhibitory activity against lipoxygenase (E.C.1.14.18.1), exhibiting activity with IC50 69.05 ± 5.06 μm. Baicalein (IC50 22.6 ± 0.5 μm) was used as a positive control. Crude extracts of Annona squamosa fruit pulp and seeds were screened for its enzyme inhibitory activity against lipoxygenase and acetylcholinesterase. The crude ethanolic extract of fruit pulp and seeds of Annona squamosa also exhibited lipoxygenase activity with 22.2 and 26.7% inhibition, while the pet.ether extract of seeds of A. squamosa exhibited 52.7% inhibition at a concentration of 40 μg/200 ml. The crude ethanolic extract of seeds of Annona squamosa was also bioassayed for acetylcholinesterase inhibition and it was found inactive.  相似文献   

8.
龋病是一种微生物感染性疾病,变形链球菌是引起其发生发展的主要致龋菌之一。近年来天然药物对龋病防治的研究已成为热点,而蜂胶是一种天然抗菌剂,国内外相关研究表明蜂胶对变形链球菌的生长、产酸、粘附、产胞外多糖及牙菌斑等方面有抑制的作用。本研究就蜂胶对变形链球菌的主要致龋毒力因子的作用研究作一综述。  相似文献   

9.
Anti-cariogenic properties of a water-soluble extract from cacao   总被引:5,自引:0,他引:5  
The addition of a water-soluble extract from cacao-extracted powder (CEPWS) to a cariogenic model food, a white chocolate-like diet that contains 35% sucrose, significantly reduced caries scores in SPF rats infected with Streptococcus sobrinus 6715, compared to control rats fed a white chocolate-like diet. CEPWS markedly inhibited water-insoluble glucan (WIG) synthesis through crude glucosyltransferases (GTFs) from Streptococcus sobrinus B13N in vitro. GTF-inhibitor(s) in CEPWS was prepared through three-step fractionation, and was termed CEPWS-BT, which is a high molecular weight (>10 kDa) heat-stable matrix of sugar, protein, and polyphenol. When the inhibitory effect of CEPWS-BT on glucan synthesis was examined using the purified GTF-I, GTF-T, and GTF-U enzymes from S. sobrinus B13N, significant reduction in GTF-I and GTF-T activity as a result of adding CEPWS-BT at low concentrations was observed. These results suggest that the addition of CEPWS to cariogenic food could be useful in controlling dental caries.  相似文献   

10.
Streptococcus mutans is a cariogenic pathogen that produces an extracellular polysaccharide (glucan) from dietary sugars, which allows it to establish a reproductive niche and secrete acids that degrade tooth enamel. While two enzymes (GlmS and NagB) are known to be key factors affecting the entrance of amino sugars into glycolysis and cell wall synthesis in several other bacteria, their roles in S. mutans remain unclear. Therefore, we investigated the roles of GlmS and NagB in S. mutans sugar metabolism and determined whether they have an effect on virulence. NagB expression increased in the presence of GlcNAc while GlmS expression decreased, suggesting that the regulation of these enzymes, which functionally oppose one another, is dependent on the concentration of environmental GlcNAc. A glmS-inactivated mutant could not grow in the absence of GlcNAc, while nagB-inactivated mutant growth was decreased in the presence of GlcNAc. Also, nagB inactivation was found to decrease the expression of virulence factors, including cell-surface protein antigen and glucosyltransferase, and to decrease biofilm formation and saliva-induced S. mutans aggregation, while glmS inactivation had the opposite effects on virulence factor expression and bacterial aggregation. Our results suggest that GlmS and NagB function in sugar metabolism in opposing directions, increasing and decreasing S. mutans virulence, respectively.  相似文献   

11.
Aim: The objective of this study was to isolate and characterize the active compound from Trachyspermum ammi seeds, exhibiting antibiofilm activity against Streptococcus mutans, a major causal organism of dental caries. Methods and Results: Purification of the active compound from the seeds was performed by silica gel chromatography, and spectroscopic methods (FTIR, NMR and MS) were employed for its identification and structure determination. Antibiofilm and antiadherence activities of the active compound against S. mutans were analysed. Confocal microscopy was performed to visualize the effect of the compound on biofilm structure of S. mutans. Around 50% reduction was observed in adherence at 39·06 μg ml?1 and in biofilm at 78·13 μg ml?1. It was found effective against adherent cells of S. mutans, reduced water‐insoluble glucan synthesis and inhibited the reduction in pH. Confocal microscopy revealed scattered cells at sub‐MIC concentration of the compound, resulting in distorted biofilm architecture in contrast to clustered cells seen in control. Conclusion: This study revealed a novel compound, a naphthalene derivative, isolated first time from T. ammi seeds with antibiofilm activity against S. mutans. Significance and Impact of the Study: Trachyspermum ammi represents an interesting source of a novel compound, (4aS, 5R, 8aS) 5, 8a‐di‐1‐propyl‐octahydronaphthalen‐1‐(2H)‐one, with a great potential to be used as a therapeutic agent against dental caries.  相似文献   

12.
Khan AU  Islam B  Khan SN  Akram M 《Bioinformation》2011,5(10):440-445
Biofilm formation by Streptococcus mutans is considered as its principal virulence factor, causing dental caries. Mutants of S. mutans defective in biofilm formation were generated and analyzed to study the collective role of proteins in its formation. Mutants were characterized on the basis of adherence to saliva-coated surface, and biofilm formation. The confocal laser microscopy and scanning electron microscopy images showed that the control biofilms had cluster of cells covered by layer of exo-polysaccharide while the biofilms of mutants were thin and spaced. Two-dimensional protein electrophoresis data analysis identified 57 proteins that are either up (44 proteins) or down (13 proteins) regulated. These data points to the importance of up and down regulated proteins in the formation of biofilm in Streptococcus mutans.  相似文献   

13.
The occurrence of dental caries is mainly associated with oral pathogens, especially cariogenic Streptococcus mutans. Preliminary antibacterial screening revealed that the extract of Myristica fragrans, widely cultivated for the spice and flavor of foods, possessed strong inhibitory activity against S. mutans. The anticariogenic compound was successfully isolated from the methanol extract of M. fragrans by repeated silica gel chromatography, and its structure was identified as macelignan by instrumental analysis using 1D-NMR, 2D-NMR and EI-MS. The minimum inhibitory concentration (MIC) of macelignan against S. mutans was 3.9 microg/ml, which was much lower than those of other natural anticariogenic agents such as 15.6 microg/ml of sanguinarine, 250 microg/ml of eucalyptol, 500 microg/ml of menthol and thymol, and 1000 microg/ml of methyl salicylate. Macelignan also possessed preferential activity against other oral microorganisms such as Streptococcus sobrinus, Streptococcus salivarius, Streptococcus sanguis, Lactobacillus acidophilus and Lactobacillus casei in the MIC range of 2-31.3 microg/ml. In particular, the bactericidal test showed that macelignan, at a concentration of 20 microg/ml, completely inactivated S. mutans in 1 min. The specific activity and fast-effectiveness of macelignan against oral bacteria strongly suggest that it could be employed as a natural antibacterial agent in functional foods or oral care products.  相似文献   

14.
It is of interest to document the effect of Emblica officinalis (E. officinalis) and Zingiber officinalae (Z. officinalae) leaf extract on reactive oxygen species, antioxidant potential changes in arsenic and lead-induced toxicity in male rats. We used 8 groups of adult male Wistar rats with 1 control group for this study. The animals were divided into Group I: Control and Group II: Lead and sodium arsenite induced rats (animals were induced for metal toxicity by the combined administration of arsenic (13.8 mg/ kg body weight) and lead (116.4 mg/kg body weight). These doses were administered by gastric intubation during 14 consecutive days using known standard procedures. Arsenic and lead induced rats treated with ethanolic extract of Emblica officinalis (60 mg/kg body weight/day, orally for 45 days) are group III rats. Group IV animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis (120 mg/kg body weight/day for 45 days). Group V animals are arsenic and lead induced rats treated orally with ethanolic extracts of Z. officinalae (60 mg/kg body weight/day for 45 days). Group VI animals are arsenic and lead induced rats orally treated with ethanolic extracts of Zingiber officinalis (120 mg/kg body weight/day for 45 days). Group VII animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis and Z. officinalae (60 + 60 mg/kg body weight/day for 45 days). Group VIII animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis and Z. officinalae (120 + 120 mg/kg body weight/day, orally for 45 days). Normal Control animals were treated orally with ethanolic extracts of E. officinalis (120mg/kg body weight) + Z. officinalae (120mg/kg body weight) for 45 days. The control and experimental animals were then subjected to analysis for oxidative stress markers such as H2O2, *OH, and lipid peroxidation (LPO), antioxidant enzymes in addition to liver and kidney function markers. Results: Arsenic and lead induced rats showed a significant increase in the levels of reactive oxygen species (H2O2, OH* and LPO) with concomitant alterations in the renal and liver tissues. However, enzymic and non-enzymic antioxidant levels were decreased. Nevertheless, an oral effective dose of E. officinalis and Z. officinalae (120 + 120 mg/kg body weight/day increased the antioxidant enzymes and retrieved the altered levels of ROS and LPO that were induced by arsenic and lead. Thus, we show that E. officinalis and Z. officinalae leaf extract exhibits nephroprotective and hepatoprotective role through the restoration of reactive oxygen species and antioxidant enzymes in the kidney and liver tissue of Arsenic and Lead-induced nephrotoxicity and hepatotoxicity in rats. Hence, E. officinalis and Z. officinalae leaf extract are potential therapeutic options for the treatment of metal toxicity-induced kidney and liver diseases.  相似文献   

15.
Zhou X  Wang Y  Or PM  Wan DC  Kwan YW  Yeung JH 《Phytomedicine》2012,19(7):648-657
The effects of Danshen and its active components (tanshinone I, tanshinone IIA, dihydrotanshinone and cryptotanshinone) on CYP2D6 activity was investigated by measuring the metabolism of a model CYP2D6 probe substrate, dextromethorphan to dextrorphan in human pooled liver microsomes. The ethanolic extract of crude Danshen (6.25-100 μg/ml) decreased dextromethorphan O-demethylation in vitro (IC(50)=23.3 μg/ml) and the water extract of crude Danshen (0.0625-1 mg/ml) showed no inhibition. A commercially available Danshen pill (31.25-500 μg/ml) also decreased CYP2D6 activity (IC(50)=265.8 μg/ml). Among the tanshinones, only dihydrotanshinone significantly inhibited CYP2D6 activity (IC(50)=35.4 μM), compared to quinidine, a specific CYP2D6 inhibitor (IC(50)=0.9 μM). Crytotanshinone, tanshinone I and tanshinone IIA produced weak inhibition, with IC(20) of 40.8 μM, 16.5 μM and 61.4 μM, respectively. Water soluble components such as salvianolic acid B and danshensu did not affect CYP2D6-mediated metabolism. Enzyme kinetics studies showed that inhibition of CYP2D6 activity by the ethanolic extract of crude Danshen and dihydrotanshinone was concentration-dependent, with K(i) values of 4.23 μg/ml and 2.53 μM, respectively, compared to quinidine, K(i)=0.41 μM. Molecular docking study confirmed that dihydrotanshinone and tanshinone I interacted with the Phe120 amino acid residue in the active cavity of CYP2D6 through Pi-Pi interaction, but did not interact with Glu216 and Asp301, the key residues for substrate binding. The logarithm of free binding energy of dihydrotanshinone (-7.6 kcal/mol) to Phe120 was comparable to quinidine (-7.0 kcal/mol) but greater than tanshinone I (-5.4 kcal/mol), indicating dihydrotanshinone has similar affinity to quinidine in binding to the catalytic site on CYP2D6.  相似文献   

16.
The increasing prevalence of dental caries is making it more of a major world health problem. Caries is the direct result of acid production by cariogenic oral bacteria, especially Streptococcus mutans. New and better antimicrobial agents active against cariogenic bacteria are badly needed, especially natural agents derived directly from plants. We have evaluated the inhibitory actions of α-mangostin, a xanthone purified from ethanolic extracts of the tropical plant Garcinia mangostana L., by repeated silica gel chromatography. α-Mangostin was found to be a potent inhibitor of acid production by S. mutans UA159, active against membrane enzymes, including the F(H+)-ATPase and the phosphoenolpyruvate - sugar phosphotransferase system. α-Mangostin also inhibited the glycolytic enzymes aldolase, glyceraldehyde-3-phosphate dehydrogenase, and lactic dehydrogenase. Glycolysis by intact cells in suspensions or biofilms was inhibited by α-mangostin at concentrations of 12 and 120 μmol·L?1, respectively, in a pH-dependent manner, with greater potency at lower pH values. Other targets for inhibition by α-mangostin included (i) malolactic fermentation, involved in alkali production from malate, and (ii) NADH oxidase, the major respiratory enzyme for S. mutans. The overall conclusion is that α-mangostin is a multitarget inhibitor of mutans streptococci and may be useful as an anticaries agent.  相似文献   

17.
Aims:  Dental caries is caused by the disturbance in oral homeostasis, marked by a notable increase in the population of Streptococcus mutans . Lectins are a group of plant proteins that are capable of recognizing the glycoconjugates present on the bacterial surface. The aim of this study was to evaluate the effect of seven plant lectins on the growth and initial adhesion of S. mutans .
Methods and Results:  Lectins of different carbohydrate specificities were isolated from plant sources by conventional methods of protein purification. The effect on growth of S. mutans was evaluated following CLSI guidelines. None of the lectins used in this study inhibited the bacterial growth and multiplication. The adherence and biofilm formation of bacteria to saliva-coated polystyrene plates was tested in the presence of plant lectins. All the plant lectins tested, inhibited both the adherence and biofilm in a concentration dependent manner. Confocal microscopy and scanning electron microscopy were employed to assess the biofilm formation in the presence of plant lectin (glucose/mannose-specific) at sub-minimal inhibitory concentrations. These evaluations revealed that lectins inhibited the clumping and attachment of S. mutans .
Conclusions:  Lectins tested here inhibited initial biofilm formation by S. mutans. Glucose/Mannose-specific lectin altered the adhesion arrangement of the bacteria on the saliva-coated surfaces.
Significance and Impact of the Study:  The plant lectins used in this study may offer a novel strategy to reduce development of dental caries by inhibiting the initial adhesion and subsequent biofilm formation of S. mutans.  相似文献   

18.
Five strains of Streptococcus mutans were grown in continuous culture with either a limited supply or an excess of glucose. Proteins secreted into the extracellular fluid by strains C67-1, 3209 and K1 rapidly catalysed the synthesis of insoluble glucan from sucrose (mutansucrase activity). The culture fluid from strains Ingbritt or C67-25 catalysed the synthesis of soluble glucan (dextransucrase activity) and fructan, but little or no mutansucrase activity was detected. The strains which secreted active mutansucrase readily colonized a smooth hard surface during growth in batch culture and were more cariogenic in pathogen-free rats than those which secreted little mutansucrase activity. There was no similar correlation between fructosyltransferase, dextransucrase or total glucosyltransferase activity and either adherence or cariogenicity. We conclude that the ability to catalyse insoluble glucan synthesis is a major determinant of the cariogenicity of S. mutans strains.  相似文献   

19.
The aim of this study was to determine the optimal concentration of Korean propolis against clinical isolates of mutans streptococci (MS) from Koreans. The antimicrobial activity was evaluated using the minimum inhibitory concentration (MIC) and time-kill curves against mutans streptococci. The MIC(90) values of propolis for MS were 35 μg/ml. Propolis had a bacteriostatic effect on Streptococcus mutans ATCC 25175(T) and bactericidal effects on Streptococcus sobrinus ATCC 33478(T) at > 2 × MIC (70 μg/ml). These results suggest that the propolis can be used in the development of oral hygiene products for the prevention of dental caries.  相似文献   

20.
Streptococcus mutans, a multivirulent pathogen is considered the primary etiological agent in dental caries. Development of antibiotic resistance in the pathogen has created a need for novel antagonistic agents which can control the virulence of the organism and reduce resistance development. The present study demonstrates the in vitro anti-virulence potential of betulin (lup-20(29)-ene-3β,28-diol), an abundantly available plant triterpenoid against S. mutans UA159. Betulin exhibited significant dose dependent antibiofilm activity without affecting bacterial viability. At 240 µg/ml (biofilm inhibitory concentration), betulin inhibited biofilm formation and adherence to smooth glass surfaces by 93 and 71 % respectively. It reduced water insoluble glucan synthesis by 89 %, in conjunction with down regulation of gtfBC genes. Microscopic analysis confirmed the disruption in biofilm architecture and decreased exopolysaccharide production. Acidogenicity and aciduricity, key virulence factors responsible for carious lesions, were also notably affected. The induced auto-aggregation of cells upon treatment could be due to the down regulation of vicK. Results of gene expression analysis demonstrated significant down-regulation of virulence genes upon betulin treatment. Furthermore, the nontoxic effect of betulin on peripheral blood mononuclear cells even after 72 h treatment makes it a strong candidate for assessing its suitability to be used as a therapeutic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号