首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aphid-induced reduction of shoot and root growth in Douglas-fir seedlings   总被引:2,自引:0,他引:2  
1. The short‐ and long‐term effects of photosynthate removal by sap‐sucking herbivores on plant growth were examined by experimentally manipulating densities of an aphid Cinara pseudotsugae (Wilson) on 2‐year‐old Douglas‐fir seedlings Pseudotsuga menziesii (Mirb.) Franco under greenhouse conditions. An 18‐week test was conducted to determine short‐term effects. Effects of long‐term aphid feeding were examined by exposing seedlings to aphid feeding for two consecutive growing seasons. A third experiment evaluated the extent of recovery during 1 year following a single season of aphid feeding. At least 35 seedlings were used in each test. 2. Volume and dry weight of both shoots and roots decreased significantly with increasing aphid feeding in all three experiments. 3. The most significant and severe aphid effect was reduced root tissue density, suggesting carbohydrate depletion due to translocation from roots to shoots. 4. There was no sign of recovery, of either root or shoot growth, during the year following one season of feeding. 5. The results of this study indicate that short‐term feeding by aphids can affect plant growth and structure for a relatively long time.  相似文献   

3.
We hypothesized that the resistance of Hawkeye (HA) soybean (Glycine max L.) to iron-deficiency induced chlorosis (IDC) is correlated to an ability to accumulate a large pool of extracellular-root iron which can be mobilized to shoots as the plants become iron deficient. Iron in the root apoplast was assayed after efflux from the roots of intact plants in nutrient solution treated with sodium dithionite added under anaerobic conditions. Young seedlings of HA soybean accumulated a significantly larger amount of extracellular iron in their roots than did either IDC-susceptible PI-54619 (PI) soybean or IDC-resistant IS-8001 (IS) sunflower (Helianthus annus L.). Concurrently, HA soybean had much higher concentrations of iron in their shoots than either PI soybean or IS sunflower. The concentration of iron in the root apoplast and in shoots of HA soybean decreased sharply within days after the first measurements of extracellular root iron were made, in both +Fe and −Fe treatments. The accumulation of short-term iron reserves in the root apoplast and translocation of iron in large quantities to the shoot may be important characteristics of IDC resistance in soybeans.  相似文献   

4.
Sheng C  Harper JE 《Plant physiology》1997,113(3):825-831
Grafting studies involving Williams 82 (normally nodulating) and NOD1-3 (hypernodulating) soybean (Glycine max [L.] Merr.) lines and Lablab purpureus were used to evaluate the effect of shoot and root on nodulation control and plant growth. A single- or double-wedge graft technique, with superimposed partial defoliation, was used to separate signal control from a photosynthate supply effect. Grafting of hypernodulated soybean shoots to roots of Williams 82 or L. purpureus resulted in increased nodule numbers. Grafting of two shoots to one root enhanced root growth in both soybean genotypes, whereas the nodule number was a function of shoot genotype but not of the photosynthetic area. In double-shoot, single-root-grafted plants, removing trifoliolate leaves from either Williams 82 or NOD1-3 shoots decreased root and shoot dry matter, attributable to decreased photosynthetic source. Concurrently, Williams 82 shoot defoliation increased the nodule number, whereas NOD1-3 shoot defoliation decreased the nodule number on both soybean and L. purpureus roots. It was concluded that (a) soybean leaves are the dominant site of autoregulatory signal production, which controls the nodule number; (b) soybean and L. purpureus have a common, translocatable, autoregulatory control signal; (c) seedling vegetative growth and nodule number are independently controlled; and (d) two signals, inhibitor and promoter, may be involved in controlling legume nodule numbers.  相似文献   

5.
6.
7.
Alternative oxidase activity (cyanide-insensitive respiration) was measured in mitochondria from the shoots, roots, and nodules of soybean (Glycine max L.) and siratro (Macroptilium atropurpureum) plants. Activity was highest in the shoots and lowest in the nodules. Alternative oxidase activity was associated with one (roots) or two (shoots) proteins between 30 and 35 kilodaltons that were detected by western blotting with a monoclonal antibody against Sauromatum guttatum alternative oxidase. No such protein was detected in nodule mitochondria. Measurements of oxygen uptake by isolated soybean root and nodule cells in the presence of cyanide and salicylhydroxamic acid indicated that alternative oxidase activity was confined to the uninfected cortex cells of the nodule. Immunoprecipitation of translation products of mRNA isolated from soybean shoots revealed a major band at 43 kilodaltons that is assumed to be the precursor of an alternative oxidase protein. This band was not seen when mRNA from nodules was treated in the same fashion. The results indicate that tissue-specific expression of the alternative oxidase occurs in soybean and siratro.  相似文献   

8.
9.
10.
11.
Effects of NaCl and Mycorrhizal Fungi on Antioxidative Enzymes in Soybean   总被引:12,自引:3,他引:9  
The effects of different concentrations of NaCl on the activities of antioxidative enzymes in the shoots and roots of soybean (Glycine max [L.] Merr cv. Pershing) inoculated or not with an arbuscular mycorrhizal fungus, Glomus etunicatum Becker & Gerdemann, were studied. Furthermore, the effect of salt acclimated mycorrhizal fungi on the antioxidative enzymes in soybean plants grown under salt stress (100 mM NaCl) was investigated. Activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were increased in the shoots of both mycorrhizal (M) and nonmycorrhizal (NM) plants grown under NaCl salinity. Salinity increased SOD activity in the roots of M and NM plants, but had no effect on CAT and polyphenol oxidase activities in the roots. M plants had greater SOD, POD and ascorbate peroxidase activity under salinity. Under salt stress, soybean plants inoculated with salt pre-treated mycorrhizal fungi showed increased SOD and POD activity in shoots, relative to those inoculated with the non pre-treated fungi.  相似文献   

12.
The soybean cyst nematode (SCN) Heterodera glycines is the most devastating pest of soybean in the U.S.A. The resistance response elicited by SCN in soybean is complex, and genes involved in the response to a large extent are unknown and not well characterized. We constructed cDNA libraries made from mRNA extracted from roots of the resistant soybean Glycine max L. Merr. 'Peking' at 12 h, 2 to 4 days, and 6 to 8 days post inoculation with the soybean cyst nematode, population NL1-RHp, similar to race 3. Expressed sequence tag analysis of the libraries provides rapid discovery of genes involved in the response of soybean to the nematode. A total of 3454 cDNA clones were examined from the three libraries, of which 25 cDNAs were derived from nematode RNA. The levels of certain stress-induced genes such as SAM22 and glutathione S-transferase (GST8) were elevated in the SCN-infected roots relative to uninoculated roots. Early defense response genes, particularly ascorbate peroxidase and lipoxygenase, were abundant in the 12-h library. By 6-8 days, the expression of most of those genes was not as abundant, whereas genes coding for unknown proteins and stress-induced proteins continued to be highly expressed. These ESTs and associated information will be useful to scientists examining gene and protein interactions between nematodes and plants.  相似文献   

13.
The rate of NO3- uptake by soybean (Glycine max [L.] Merrill) roots generally declines during the night in association with progressive depletion of the nonstructural carbohydrate pool in the shoot as well as the concentration of carbohydrates in roots. To determine if NO3- uptake rate changes in response to variations in translocation rate of carbohydrates from shoot to roots per se or to carbohydrate status of the roots, the night period was interrupted with a low light level from incandescent lamps to alter the diurnal pattern of NO3- uptake by roots and export of carbohydrate from shoots of nonnodulated soybean. Depletion of NO3- from replenished, complete nutrient solutions containing 1 mM NO3- was measured by ion chromatography and rates of NO3- uptake were calculated. Changes in export of carbohydrates from shoot to roots during intervals of the night period were calculated as the differences between rates of disappearance in contents of nonstructural carbohydrates and their estimated rates of utilization in shoot respiration and growth. A positive, significant correlation occurred between changes in calculated rates of carbohydrate export from shoots and NO3- uptake rates. Conversely, there was no significant correlation between concentrations of nonstructural carbohydrates in roots and NO3- uptake rates. These results support the hypothesis that carbohydrate flux from shoot to roots has a direct role in regulation of nitrogen uptake by the whole plant.  相似文献   

14.
Wang  J. F.  Liu  Z. 《Plant and Soil》1999,216(1-2):47-51
Pot experiments were conducted in a glasshouse to investigate the effects of vanadium (V) on the growth of soybean seedlings in two soils. As the concentration of V added to the fluvo-aquic soil (Fluvaqents) exceeded 30 mg V kg-1 soil, the dry matter yields of shoots and roots were significantly decreased (>1%LSD), and the leaves of soybean seedlings turned yellow and withered and the roots were short and beginning to rot. In the red earth (Oxisols), no marked stunting was observed (<5% LSD), even when the concentration of V added to the soil was as high as 75 mg V kg-1. As the concentrations of vanadium in soybean seedling were closely related to the concentration of soluble vanadium in soil solutions at pH 5–9 in the soil equilibrium solution, the fluvo-aquic soil had lower adsorption capacity for V than the red earth, there was much higher concentration of soluble V in the soil solution, so the symptom of V toxicity appearing in the plants grown on fluvo-aquic soil was easily observed. In addition, the ratio of the total Mo to the total V in shoots decreased slightly with increase of concentration of V added to soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
16.
17.
LEV-YADUN  SIMCHA 《Annals of botany》1997,80(2):125-129
Examination of the fibre system in roots and shoots ofArabidopsisthaliana(L.) Heynh. revealed three types of fibres, distinguishedaccording to their site of differentiation: (1) short fibre-sclereidsin the secondary phloem of roots and shoots at the rosette level;(2) long fibres in the secondary xylem of the main root; and(3) very long fibres in the xylem of the inflorescence stems.These three types are in addition to the small number of primaryphloem fibres that are formed even in smallA. thalianaindividuals.These findings provide a basis for the use ofArabidopsis thalianaasa model system to study the processes leading to fibre differentiationin dicotyledons. Arabidopsis thaliana; differentiation; fibre-sclereids; inflorescences; phloem fibres; xylem  相似文献   

18.
Lotus japonicus , a model legume plant, was reviewed and compared with Medicago truncatula and soybean. Several mutant libraries are being analyzed, focusing on the nodulation mechanism. The first plant nodulation gene nin was cloned by Ac-transposon tagging. Soybean remains as the most studied legume, especially in relation to the disease resistance genes. However, Lotus japonicus offers several advantages for molecular genetics, and the remained lackings were recently filled up, namely 1) an appropriate crossing partner for Gifu, accession Miyakojima, was proposed for its 4% polymorphism and smooth recombining ability; 2) a genome library with long inserts, average of 140 kb, and 8.2 genome equivalents of library size, has been established; and 3) the rather low polymorphic rate between Gifu and Miyakojima can be overcome with the HEGS (High Efficiency Genome Scanning). With this infrastructure, positional cloning of the causative genes of several mutant libraries will be accomplished in a short term. Genome sizes of L. japonicus acc. Gifu and Miyakojima were determined with high accuracy, to be 494±0 MB and 512±1 MB, respectively. The feasibility of constructing a physical map of the entire genome, for functional genomics, was discussed. Received 5 September 2000/ Accepted in revised form 11 October 2000  相似文献   

19.
在水培条件下,研究不同浓度磷影响大豆根冠中碳分配的结果表明:磷有效性对大豆根冠中碳分配的影响依赖于磷浓度与胁迫时间。磷浓度高于0.125mmol.L^-1或低磷胁迫7d以内,大豆根冠中碳分配受到的影响不显著。低磷胁迫14d的大豆的净光合速率和根呼吸速率均显著下降,根冠比显著提高。这显示长期低磷胁迫下大豆碳同化总量和根呼吸消耗的碳量虽然减少,但根系生长的碳消耗则增加,光合碳同化形成的碳水化合物向根部的分配是受到促进的。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号