首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contractile systems of vertebrate smooth and striated muscles are compared. Smooth muscles contain relatively large amounts of actin and tropomyosin organized into thin filaments, and smaller amounts of myosin in the form of thick filaments. The protein contents are consistent with observed thin:thick filament ratios of about 15-18:1 in smooth compared to 2:1 in striated muscle. The basic characteristics of both types of contractile proteins are similar; but there are a variety of quantitative differences in protein structures, enzymatic activities and filament stabilities. Biochemical and X-ray diffraction data generally support recent ultrastructural evidence concerning the organization of the myofilaments in smooth muscle, although a basic contractile unit comparable to the sarcomere in striated muscle has not been discerned. Myofilament interactions and contraction in smooth muscle are controlled by changes in the Ca2+ concentration. Recent evidence suggests the Ca2+-binding regulatory site is associated with the myosin in vertebrate smooth muscle (as in a variety of invertebrate muscles), rather than with troponin which is the regulatory protein associated with the thin filament in vertebrate striated muscle.  相似文献   

2.
Katina IE  Nasledov GA 《Biofizika》2006,51(5):898-905
A comparative analysis of the effects of the concentrations of Ca2+ in external medium and the inhibitor (dantrolene) and activator (4-chloro-m-cresol) of rhyanodine-sensitive Ca2+ channels of carcoplasmic reticulum on the characteristics of potassium contracture in frog twitch and tonic skeletal muscles has been performed. It was shown that the duration of contracture in tonic muscles is not restricted by the presence of Ca2+, as distinct from twitch muscles. Dandrolene does not practically affect the contractile responses of tonic fibres, and the concentration of cresol eliciting the contracture for tonic fibres is substantially higher (1 mM) than for twitch fibers (0.25 mM). In twitch fibers, the potassium contracture activated in the presence of cresol is comparable in amplitude and dynamics with the contracture under control conditions, and in tonic fibers a summing of responses without relaxation after the washing of excessive potassium is observed. This suggests that, in twitch fibers, the influx of Ca2+ can directly create the concentration sufficient for the maintenance of contraction, and in tonic fibers its involvement is mediated through the Ca(2+)-dependent activation of the beta-isoform of rhyanodine-sensitive channels.  相似文献   

3.
Effects of extracellular calcium on canine tracheal smooth muscle   总被引:1,自引:0,他引:1  
Strips of canine tracheal smooth muscle were studied in vitro to determine the effects of changes in the extracellular calcium (Cao) concentration on tonic contractions induced by acetylcholine and 5-hydroxytryptamine. Strips were contracted with graded concentrations of the above agents in 2.4 mM Ca, after which CaCl2 was administered to achieve final concentrations of 5.0, 10.0, and 20.0 mM. Increases in Cao to 5 mM or above caused significant relaxation of muscles contracted with 5-hydroxytryptamine but did not significantly relax muscles contracted with acetylcholine. Increases in Cao also caused significant relaxation of muscles contracted with low concentrations of K+ (20 or 30 mM). However, in 60 or 120 mM K+, increases in Cao resulted predominantly in muscle contraction. Inhibition of the Na+-K+-ATPase by ouabain (10(-5) M) or K+ depletion reversed the effects of Cao from relaxation to contraction in tissues contracted with 5-hydroxytryptamine. Increases in Cao also caused contraction rather than relaxation in the presence of verapamil (10(-6) M). We conclude that calcium has both excitatory and inhibitory effects on the contractile responses of canine tracheal smooth muscle. The inhibitory effects of Ca2+ appear to be linked to the activity of the membrane Na+-K+-ATPase.  相似文献   

4.
Dystrophin is absent in muscle fibers of patients with Duchenne muscular dystrophy (DMD) and in muscle fibers from the mdx mouse, an animal model of DMD. Disrupted excitation-contraction (E-C) coupling has been postulated to be a functional consequence of the lack of dystrophin, although the evidence for this is not entirely clear. We used mechanically skinned fibers (with a sealed transverse tubular system) prepared from fast extensor digitorum longus muscles of wild-type control and dystrophic mdx mice to test the hypothesis that dystrophin deficiency would affect the depolarization-induced contractile response (DICR) and sarcoplasmic reticulum (SR) function. DICR was similar in muscle fibers from mdx and control mice, indicating normal voltage regulation of Ca2+ release. Nevertheless, rundown of DICR (<50% of initial) was reached more rapidly in fibers from mdx than control mice [control: 32 +/- 5 depolarizations (n = 14 fibers) vs. mdx: 18 +/- 1 depolarizations (n = 7) before rundown, P < 0.05]. The repriming rate for DICRs was decreased in fibers from mdx mice, with lower submaximal DICR observed after 5, 10, and 20 s of repriming compared with fibers from control mice (P < 0.05). SR Ca2+ reloading was not different in fibers from control and mdx mice, and no difference was observed in SR Ca2+ leak. Caffeine (2-7 mM)-induced contraction was diminished in fibers from mdx mice compared with control (P < 0.05), indicating depressed SR Ca2+ release channel activity. Our findings indicate that fast fibers from mdx mice exhibit some impairment in the events mediating E-C coupling and SR Ca2+ release channel activity.  相似文献   

5.
Barron JT  Nair A 《Life sciences》2003,74(5):651-662
Elevation of ambient lactate concentration has been shown to alter contractile reactivity of vascular smooth muscle. We tested the hypothesis that lactate affects the disposition of intracellular free Ca2+. Porcine carotid artery strips were incubated in normal medium and in medium containing 10 mM sodium lactate or 10 mM sodium pyruvate. The rate and magnitude of contraction in response to K+-depolarization was depressed in lactate when compared to control. This was associated with a decrease in the onset and magnitude of the normal increase in free [Ca2+]i, as reflected by fluorescence of fura-2. Pyruvate had no effect on these variables. Depression in [Ca2+]i could not be attributed to a selective effect of lactate on pHi, membrane potential, or to enhanced superoxide production. Deletion of Ca2+ from the incubation medium negated depression of contractile responsiveness produced by lactate when compared to control. Lactate had no effect on contraction induced by 100 microM norepinephrine, which releases intracellular stored Ca2+. Thus, lactate inhibits arterial smooth muscle contraction by inhibiting influx of Ca2+ across the sarcolemma.  相似文献   

6.
Chemically skinned fibers from guinea pig taenia caecum were prepared by saponin treatment to study the smooth muscle contractile system in a state as close to the living state as posible. The skinned fibers showed tension development with an increase of Ca2+ in the solution, the threshold tension occurring as 5 X 10(-7) M Ca2+. The maximal tension induced with 10(-4) M Ca2+ was as large and rapid as the potassium-induced contracture in the intact fibers. The slope of the pCa tension curve was less steep than that of skeletal muscle fibers and shifted in the direction of lower pCa with an increase of MgATP. The presence of greater than 1 mM Mg2+ was required for Ca2+-induced contraction in the skinned fibers as well as for the activation of ATPase and superprecipitation in smooth muscle myosin B. Mg2+ above 2 mM caused a slow tension development by itself in the absence of Ca2+. Such a Mg2+-induced tension showed a linear relation to concentrations up to 8 mM in the presence of MgATP. Increase of MgATP concentration revealed a monophasic response without inhibition of Ca2+-induced tension development, unlike the biphasic response in striated muscle. When MgATP was removed from the relaxing solution, the tension developed slowly and slightly, even though the Mg2+ concentrations was fixed at 2 mM. These results suggest a substantial difference in the mode of actin-myosin interaction between smooth and skeletal muscle.  相似文献   

7.
Raman spectra of an intact muscle fiber and of internally perfused fibers in capillary tubes have been obtained. The use of internal perfusion has insured a good control of the concentration of Ca2+, Mg2+ and ATP. The comparison of the spectra obtained with the two types of fibers shows that the muscle structure is well preserved in capillary tubes. In addition, it appears that the sarcomere length has no significant effect on the Raman spectrum of muscle fibers. Our results on perfused fibers demonstrate that a fiber can be kept in the relaxed state for several hours, then displaying an intact fiber spectrum, when the concentration of ATP, Mg2+ and Ca2+ is maintained at 5, 2 and 0 mM, respectively. Therefore ATP and Mg2+ do not affect the Raman spectrum of muscle fibers. When one of these components is removed, or when Ca2+ is added, contraction occurs and causes major spectral changes. These results are interpreted as being due to strong electrostatic interactions between basic and acidic residues during contraction, and to a change of the alpha-helical content, or of the orientation, of some of the contractile proteins.  相似文献   

8.
The mechanism of the Ba2+-induced contraction was investigated using intact and saponin-treated skinned smooth muscle (skinned muscle) strips of the rabbit mesenteric artery. After depletion of Ca2+ stored in the caffeine-sensitive site, greater than 0.65 mM Ba2+ evoked contraction in muscle strips depolarized with 128 mM K+ in Ca2+-free solution in a dose-dependent fashion, and the ED50 values for Ca2+ and Ba2+ were 0.5 mM and 1.2 mM in intact muscle strips, respectively. Nisoldipine (10 nM) blocked the contraction evoked by high K+ or 10 microM norepinephrine (NE) in the presence of 2.6 mM Ba2+, but did not block the contraction evoked in the presence of 2.6 mM Ca2+. These results may indicate that Ba2+ permeates the voltage-dependent Ca2+ channel. In skinned muscle strips, the ED50 values for Ca2+ and Ba2+ were 0.34 and 90 microM, respectively, as estimated from the pCa- and pBa-tension relationships. Calmodulin enhanced and trifluoperazine inhibited the Ba2+- and Ca2+-induced contractions. After the application of Ba2+ or Ca2+ with ATP gamma S in rigor solution, myosin light chain (MLC) was irreversibly thiophosphorylated, as estimated from the Ba2+- or Ca2+-independent contraction. Furthermore, both divalent cations phosphorylated MLC, as measured using two-dimensional gel electrophoresis, to the extent expected from the amplitudes of the contraction evoked by these cations. Thus, Ba2+ is capable of activating the contractile proteins as Ca2+ does. The amount of Ca2+ or Ba2+ stored in cells was estimated from the caffeine response evoked in Ca2+-free solution in intact and skinned muscle strips. After the application of 0.3 microM Ca2+ or 0.1 mM Ba2+ for 60 s to skinned muscle strips after the depletion of Ca2+ stored in cells, caffeine produced a contraction only upon pretreatment with Ca2+ but not with Ba2+. When Ba2+ was applied successively just after the application of Ca2+, the subsequently evoked caffeine-induced contraction was much smaller than that evoked by pretreatment with Ca2+ alone. The above results indicate that Ba2+ permeates the voltage-dependent Ca2+ channel but may not permeate the receptor-operated Ca2+ channel, it releases Ca2+ from store sites but is not accumulated into the store site, and it directly activates the contractile proteins via formation of a Ba2+-calmodulin complex.  相似文献   

9.
The systolic and diastolic properties of single myocytes and intact papillary muscles isolated from hearts of adult rats and rabbits were examined at 37 degrees C over a range of stimulation frequencies and bathing [Ca2+]o (Cao). In both rabbit myocytes and intact muscles bathed in 1 mM Cao, increasing the frequency of stimulation from 6 to 120 min-1 resulted in a positive staircase of twitch performance. During stimulation at 2 min-1, twitch performance also increased with increases in Cao up to 20 mM. In the absence of stimulation, both rabbit myocytes and muscles were completely quiescent in less than 15 mM Cao. Further increases in Cao caused the appearance of spontaneous asynchronous contractile waves in myocytes and in intact muscles caused scattered light intensity fluctuations (SLIF), which were previously demonstrated to be caused by Ca2+-dependent spontaneous contractile waves. In contrast to rabbit preparations, intact rat papillary muscles exhibited SLIF in 1.0 mM Cao. Two populations of rat myocytes were observed in 1 mM Cao: approximately 85% of unstimulated cells exhibited low-frequency (3-4 min-1) spontaneous contractile waves, whereas 15%, during a 1-min observation period, were quiescent. In a given Cao, the contractile wave frequency in myocytes and SLIF in intact muscles were constant for long periods of time. In both intact rat muscles and myocytes with spontaneous waves, in 1 mM Cao, increasing the frequency of stimulation from 6 to 120 min-1 resulted, on the average, in a 65% reduction in steady state twitch amplitude. Of the rat myocytes that did not manifest waves, some had a positive, some had a flat, and some had a negative staircase; the average steady state twitch amplitude of these cells during stimulation at 120 min-1 was 30% greater than that at 6 min-1. In contrast to rabbit preparations, twitch performance during stimulation at 2 min-1 saturated at 1.5 mM Cao in both intact rat muscles and in the myocytes with spontaneous waves. We conclude that the widely divergent, Ca2+-dependent systolic and diastolic properties of intact rat and rabbit cardiac muscle are retained with a high degree of fidelity in the majority of viable single myocytes isolated from the myocardium of these species, and that these myocytes are thus a valid model for studies of Ca2+-dependent excitation-contraction mechanisms in the heart.  相似文献   

10.
A new method for preparing permeabilized smooth muscle fibers from rabbit mesenteric artery has been developed using alpha-toxin, a transmembrane pore-making exo-protein produced by Staphylococcus aureus. After alpha-toxin treatment the fibers developed tension as a function of Ca2+ concentration (EC50 = 890 nM). But they could not contract without added ATP, indicating ATP is permeable. When the sarcoplasmic reticulum was loaded with 5 X 10(-7) M Ca2+ solution, NE induced a transient contraction in 2 mM EGTA 0 M Ca2+ solution and a transient and maintained contraction in 5 X 10(-7) M Ca2+ solution. GTP-gamma-S, a non-hydrolyzable analogue of GTP, substituted for NE in producing these contractile effects. The analysis of the relationship between Ca2+ and maintained tension revealed that NE and GTP-gamma-S cause increases in Ca2+ sensitivity of myofilament shifting the EC50 to 280 nM and 160 nM, respectively. We conclude that NE or GTP-gamma-S causes an increase in myofilament Ca2+ sensitivity and that G protein may be involved in receptor signal transduction system. alpha-Toxin is a useful tool to permeabilize the smooth muscle tissue to ions and small molecules without any damage of receptor and signal transduction system.  相似文献   

11.
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.  相似文献   

12.
The G-protein-dependent intracellular signal cascades of excitation in longitudinal and circular intestinal smooth muscles (SM) are compared and summarized in the present review. The key mechanism of excitation in longitudinal SM is an activation of electro-mechanical coupling, in that G-proteins, phospholipase A2, arachidonic acid, membrane-bound cyclic adenosine diphosphoribose and Ca2+ are involved. We observed the role of arachidonic acid-activated chorine and voltage-dependent Ca2+ -channels (L-type) in Ca2+ mobilization in these muscle cells. In contrast to longitudinal, the main mechanism of agonist-induced excitation in circular SM is connected with activation of key methabotropical processes. The role of Rho-kinase in mechanisms of Ca2+ --sensitization of contractile apparatus in SM is also shown in this review. A comparative analysis of involvement of different links of signal cascades in initial and sustained phases of contraction in longitudinal and circular SM are also reviewed.  相似文献   

13.
The effects of stimulation frequency (0.2-1.5 Hz) and extracellular calcium concentration ([Ca2+]o) (0.6-15.0 mM) on the contractile function of thin papillary muscles of euthyroid and hyperthyroid rats were studied. Hyperthyroidism led to a decrease in developed tension (DT) and time to peak tension (TPT), but it exhibited no influence on the maximal rates of contraction (+dT/dt) and relaxation (-dT/dt). Also, the mean rates of contraction were similar in euthyroid and hyperthyroid muscle groups. The increase in stimulation frequency brought about a marked decrease in DT, +dT/dt, and -dT/dt of euthyroid papillary muscles at lower frequencies in comparison to papillary muscles in the hyperthyroid group. At stimulation frequencies above 1.0 Hz, the absolute and relative levels of DT and -dT/dt of hyperthyroid myocardium were elevated over euthyroid preparations. At the same time, TPT was unchanged in any of the muscle groups. Hyperthyroidism modulated the relationships between contractile parameters and [Ca2+]o. At a [Ca2+]o of 1.0-4.0 mM, the DT of hyperthyroid papillary muscles was lower than in euthyroid muscle. At 4.0 and 8.0 mM of [Ca2+]o, the equal values of maximal DT were registered for euthyroid and hyperthyroid papillary muscles, respectively. An increase in the [Ca2+]o in the range of 1.0-15.0 mM was accompanied by an increase in TPT of both muscle groups, but to a greater extent in hyperthyroid myocardium. In conclusion, the myocardium of hyperthyroid rat appeared to exhibit decreased sensitivity to calcium as well as to the negative inotropic effect of enhanced stimulation frequency. Alterations of the processes of transsarcolemmal movement and intracellular recycling of Ca2 may be implicated.  相似文献   

14.
Chronic electro-stimulation of fast-twitch rabbit muscle with the frequency pattern received by a slow-twitch muscle induces a progressive transformation of the sarcoplasmic reticulum. After 2 days stimulation activities of Ca2+-dependent ATPase and of Ca2+ transport begin to decrease, and are paralleled by a progressive decrease in Ca2+-dependent and Ca2+, Mg2+-dependent phosphoprotein formation, reduced rate of dephosphorylation and a rearrangement of the electrophoretic polypeptide and phosphoprotein patterns. These findings suggest a transformation of the sarcoplasmic reticulum to resemble that of a slow-twitch muscle. This transformation is paralleled by increase in time-to-peak of twitch contraction and half relaxation time and occurs before conversion of the myosin light chain pattern is observed. The parallel time course of changes in contractile properties of stimulated muscle and the molecular and functional properties of the sarcoplasmic reticulum emphasizes the definitive role of the latter in determining the twitch characteristics of fast and slow twitch muscles.  相似文献   

15.
16.
1. Both the radular sac and odontophore retractor muscles of Buccinum undatum depend upon [Ca]0 to raise the [Ca]i concentration of the contractile system to activation level. 2. The K-induced responses of the muscles depend mainly upon [Ca]0 for activator Ca while the ACh responses depend upon [Ca]0 to raise stored intracellular Ca to activation levels. 3. In the radular sac muscle, it is probable that the inward current is carried by Na+ or is Na(+)-dependent and this current may release [Ca]i for contraction since the muscle became spontaneously active during ACh- and K-contractures in Ca-free seawater containing 2 mM EGTA as a calcium chelator. 4. It is proposed that since calcium antagonists are more inhibitory on ACh responses than on K-contractures, ACh releases the activator calcium for the contractile system through a slow-type Ca channel while high K releases Ca through a fast-type calcium channel in these muscles.  相似文献   

17.
M Ishizawa 《Prostaglandins》1991,42(6):579-586
The mechanical effects of 16-methyl analogues of PGE2, mainly 16,16-dimethyl PGE2, on circular and longitudinal muscles of the guinea-pig isolated proximal colon were investigated. In circular muscle strips, PGE2 100 nM produced an initial contraction followed by relaxation, while 16(R)-methyl PGE2 and 16,16-dimethyl PGE2 (1 nM - 1 microM) produced sustained contractions. In longitudinal muscle strips, PGE2 and 16-methyl analogues of PGE2 produced only contractions. The contractile responses of both muscle strips to 16,16-dimethyl PGE2 were not influenced by atropine or tetrodotoxin, indicating that these analogues act directly on the muscles, but were eliminated by the omission of extracellular Ca ions or in the presence of 1 mM lanthanum ions. However, verapamil, a Ca channel blocker, did not block the contractile response to the methyl analogues in circular muscle strips, although it completely inhibited the contractile response of longitudinal muscle strips. These results suggest that the contractile effect of 16-methyl analogues of PGE2 on the circular muscle may be due to an increased influx of Ca ions mainly via receptor-sensitive and partly voltage-sensitive Ca channels, while the contractile effect of the analogues on the longitudinal muscle may be due to an increase in influx of Ca ions via voltage-sensitive Ca channels.  相似文献   

18.
1. Serotonin (5-HT) potentiates acetylcholine (ACh)-elicited contractions of Aplysia buccal muscles. Serotonin potentiation was significantly reduced by 0.03 mM, 0.1 mM, and 0.3 mM amiloride. 2. Unpotentiated ACh-elicited contractions were significantly reduced by 0.1 mM and 0.3 mM amiloride. 3. Amiloride reduced ACh-elicited depolarization. The reduction in contraction caused by 0.3 mM amiloride (to 16% of control) was larger than could be explained by the reduction in depolarization (86% of control). 4. Amiloride had no effect on tension in skinned muscle fibers, indicating that amiloride probably did not have a direct effect on contractile mechanisms. 5. Potentiation of contraction produced by zero sodium (Tris substituted, 0 Na-Tris) medium could be abolished by 0.3 mM amiloride. 6. Zero Na-Tris increased 45Ca influx 2.7-fold. In the presence of 0.3 mM amiloride, 0 Na-Tris increased 45Ca influx only 1.4-fold. 7. Amiloride (0.3 mM) reduced the elevation of muscle cAMP caused by 10(-6) M 5-HT by 60%. Zero Na-Tris did not cause a change in muscle cAMP.  相似文献   

19.
1. The activity of NAD+-linked isocitrate dehydrogenase from the radular muscle of the whelk is higher than those in many vertebrate muscles and only slightly lower than in the flight muscles of insects. The enzyme activity from the whelk (Buccinum undatum) is stable for several hours after homogenization of the radular muscle, whereas that from insect flight muscle is very unstable. Consequently, the enzyme from the whelk muscle is suitable for a systematic investigation of the effects of Ca2+ and ADP. 2. The sigmoid response of the enzyme activity to isocitrate concentration is markedly increased by raising the Ca2+ concentration from 0.001 to 10 muM, but it is decreased by ADP. The inhibitory effect of Ca2+ is most pronounced at pH7.1; it is not observed at pH 6.5. Similar effects are observed for the enzyme from the flight muscle of the locust (Schistocerca gregaria) and the water bug (Lethocerus cordofanus). The percentage activation by ADP of the enzyme from either the whelk or the insects is greater at 10 muM-Ca2+, and 50% of the maximum activation is obtained at 0.10 and 0.16 mM-ADP for the enzyme from whelk and locust respectively at this Ca2+ concentration. At 10 muM-Ca2+ in the absence of added ADP, the apparent Km for isocitrate is markedly higher than in other conditions. Ca2+ concentrations of 0.01, 0.1 and 0.2 muM cause 50% inhibition of maximum activity of the enzyme from the muscles of the whelk, locust and water bug respectively. 3. Recent work has indicated that mitochondria may play a complementary role to the sarcoplasmic reticulum in the control of the distribution of Ca2+ in muscle. The opposite effects of Ca2+ on the activities of isocitrate dehydrogenase and mitochondrial glycerol phosphate dehydrogenase from muscle tissue are consistent with the hypothesis that changes in the intracellular distribution of Ca2+ control the activities of these two enzymes in order to stimulate energy production for the contraction process in the muscle. Although both enzymes are mitochondrial, glycerol phosphate dehydrogenase resides on the outer surface of the inner membrane and responds to sarcoplasmic changes in Ca2+ concentration (i.e. an increase during contraction), whereas the isocitrate dehydrogenase resides in the matrix of the mitochondria and responds to intramitochondrial concentrations of Ca2+ (i.e. a decrease during contraction). It is suggested that changes in intramitochondrial Ca2+ concentrations are primarily responsible for regulation of the activity of NAD+-isocitrate dehydrogenase in order to control energy formation for the contractile process. However, when the muscle is at rest, changes in intramitochondrial concentrations of ADP may regulate energy formation for non-contractile processes.  相似文献   

20.
Biphasic contractions have been obtained in guinea-pig papillary muscle by inducing partial depolarization in K+-rich solution (17 mM) containing 0.3 microM isoproterenol; whereas in guinea-pig atria, the same conditions led to monophasic contractions corresponding to the first component of contraction in papillary muscle. The relationships between the amplitude of the two components of the biphasic contraction and the resting membrane potential were sigmoidal curves. The first component of contraction was inactivated for membrane potentials less positive than those for the second component. In Na+-low solution (25 mM), biphasic contraction became monophasic subsequent to the loss of the second component, but tetraethylammonium unmasked the second component of contraction. The relationship between the amplitude of the first component of contraction and the logarithm of extracellular Ca2+ concentration was complex, whereas for the second component it was linear. When Ca2+ ions were replaced by Sr2+ ions, only the second component of contraction was observed. It is suggested that the first component of contraction may be triggered by a Ca2+ release from sarcoplasmic reticulum, induced by the fast inward Ca2+ current and (or) by the depolarization. The second component of contraction may be due to a direct activation of contractile proteins by Ca2+ entering the cell along with the slow inward Ca2+ current and diffusing through the sarcoplasm. These results do not exclude the existence of a third "tonic" component, which could possibly be mixed with the second component of contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号