首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Kim SR  Jeong HY  Yang S  Choi SP  Seo MY  Yun YK  Choi Y  Baik SH  Park JS  Gwon AR  Yang DK  Lee CH  Lee SM  Park KW  Jo DG 《BMB reports》2011,44(2):135-139
Chronic alcohol consumption contributes to numerous diseases, including cancers, cardiovascular diseases, and liver cirrhosis. Epidemiological studies have shown that excessive alcohol consumption is a risk factor for dementia. Along this line, Alzheimer's disease (AD) is the most common form of dementia and is caused by the accumulation of amyloid-β (Aβ plaques in neurons. In this study, we hypothesized that chronic ethanol consumption is associated with pathological processing of APP in AD. To investigate the relationship between chronic alcohol consumption and Aβ production, brain samples from rats fed an alcohol liquid diet for 5 weeks were analyzed. We show that the expression levels of APP, BACE1, and immature nicastrin were increased in the cerebellum, hippocampus, and striatum of the alcohol-fed group compared to the control group. Total nicastrin and PS1 levels were induced in the hippocampus of alcohol-fed rats. These data suggest that the altered expression of APP and Aβ-producing enzymes possibly contributes to the chronic alcohol consumption-mediated pathogenesis of AD.  相似文献   

4.
5.
Exposure to repetitive seizures is known to promote convulsions which depend on specific patterns of network activity. We aimed at evaluating the changes in seizure phenotype and neuronal network activation caused by a modified 6-Hz corneal stimulation model of psychomotor seizures. Mice received up to 4 sessions of 6-Hz corneal stimulation with fixed current amplitude of 32 mA and inter-stimulation interval of 72 h. Video-electroencephalography showed that evoked seizures were characterized by a motor component and a non-motor component. Seizures always appeared in frontal cortex, but only at the fourth stimulation they involved the hippocampus, suggesting the establishment of an epileptogenic process. Duration of seizure non-motor component progressively decreased after the second session, whereas convulsive seizures remained unchanged. In addition, a more severe seizure phenotype, consisting of tonic-clonic generalized convulsions, was predominant after the second session. Immunohistochemistry and double immunofluorescence experiments revealed a significant increase in neuronal activity occurring in the lateral amygdala after the fourth session, most likely due to activity of principal cells. These findings indicate a predominant role of amygdala in promoting progressively more severe convulsions as well as the late recruitment of the hippocampus in the seizure spread. We propose that the repeated 6-Hz corneal stimulation model may be used to investigate some mechanisms of epileptogenesis and to test putative antiepileptogenic drugs.  相似文献   

6.
(−)-Deprenyl, 0.05, 1.0, 2.0, and 10.0 mg/kg body weight, was administered intraperitonially to Wistar rats for 30 days. The activity of acetylcholinesterase, and monoamine oxidase A and B were assayed in different brain regions. After the experimental period acetyl cholinesterase activity was found to be significantly increased in frontal cortex [P<0.001] and hippocampus [P<0.001] but not in striatum and brainstem at 0.1, 1.0, and 2.0 mg/kg dose, the maximum increase being at 0.1 mg/kg dose. Monoamine oxidase B activity was inhibited by more than 90% at 1.0, 2.0, and 10.0 mg/kg dose while 0.05 and 0.1 dose inhibited only about 55% and 70% respectively. Monoamine oxidase A activity was inhibited to more than 70% at 1.0 mg dose and to more than 90% at 2.0 and 10.0 mg/kg dose. At 0.05 and 0.1 mg/kg dose monoamine oxidase A activity was not significantly altered.  相似文献   

7.
R T Gentry  V P Dole 《Life sciences》1987,40(22):2191-2194
To determine why animals reject alcohol when offered palatable solutions of sucrose, male C57BL/6J mice were challenged first with 5% sucrose then with 10% sucrose, while given continuous free-access to alcohol and water. The 5% sucrose dramatically reduced the intake of alcohol and increased the intake of total fluid by an average of 7.3 ml/day. The suppression of alcohol intake could not be attributed to a volumetric ceiling since access to 10% sucrose produced a further large increase in total intake (8.8 ml/day). The results support the interpretation that animals consume alcohol for characteristics it shares with sucrose.  相似文献   

8.
9.
Oxidative stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS)-2 have been shown in the pathogenesis of liver ischemia–reperfusion (IR) injury. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression therefore this study determined the role of selective N-SMase inhibition on nitrative and oxidative stress markers following liver IR injury. Selective N-SMase inhibitor was administered via intraperitoneal injections. Liver IR injury was created by clamping blood vessels supplying the median and left lateral hepatic lobes for 60 min, followed by 60 min reperfusion. Nitrative and oxidative stress markers were determined by evaluating NOS2 expression, protein nitration, nitrite/nitrate levels, 4-hydroxynonenal (HNE) formation, protein carbonyl levels and xanthine oxidase/xanthine dehydrogenase (XO/XDH) activity. Levels of sphingmyelin and ceramide in liver tissue were determined by an optimized multiple reaction monitoring method using ultra-fast liquid chromatography coupled with tandem mass spectrometry (MS/MS). Spingomyelin levels were significantly increased in all IR groups compared to controls. Treatment with a specific N-SMase inhibitor significantly decreased all measured ceramides in IR injury. NOS2 expression, nitrite/nitrate levels and protein nitration were significantly greater in IR injury and decreased with N-SMase inhibition. Treatment with a selective N-SMase inhibitor significantly decreased HNE formation, protein carbonyl levels and the hepatic conversion of XO. Data confirm the role of nitrative and oxidative injury in IR and highlight the protective effect of selective N-SMase inhibition. Future studies evaluating agents blocking N-SMase activity can facilitate the development of treatment strategies to alleviate oxidative injury in liver I/R injury.  相似文献   

10.
Bacteriophages are the most abundant and genetically diverse viruses on Earth, with complex ecology in both quantitative and qualitative terms. Somatic coliphages (SC) have been reported to be good indicators of fecal pollution in seawater. This study focused on determining the concentration of SC and their diversity by electron microscopy of seawater, plankton, and bivalve samples collected at three coastal regions in São Paulo, Brazil. The SC counts varied from <1 to 3.4 × 103 PFU/100 ml in seawater (73 samples tested), from <1 to 4.7 × 102 PFU/g in plankton (46 samples tested), and from <1 to 2.2 × 101 PFU/g in bivalves (11 samples tested). In seawater samples, a relationship between the thermotolerant coliforms and Escherichia coli and SC was observed at the three regions (P = 0.0001) according to the anthropogenic activities present at each region. However, SC were found in plankton samples from three regions: Baixada Santista (17/20), Canal de São Sebastião (6/14), and Ubatuba (3/12). In seawater samples collected from Baixada Santista, four morphotypes were observed: A1 (4.5%), B1 (50%), C1 (36.4%), and D1 (9.1%). One coliphage, Siphoviridae type T1, had the longest tail: between 939 and 995 nm. In plankton samples, Siphoviridae (65.8%), Podoviridae (15.8%), Microviridae (15.8%), and Myoviridae (2.6%) were found. In bivalves, only the morphotype B1 was observed. These SC were associated with enteric hosts: enterobacteria, E. coli, Proteus, Salmonella, and Yersinia. Baixada Santista is an area containing a high level of fecal pollution compared to those in the Canal de São Sebastião and Ubatuba. This is the first report of coliphage diversity in seawater, plankton, and bivalve samples collected from São Paulo coastal regions. A better characterization of SC diversity in coastal environments will help with the management and evaluation of the microbiological risks for recreation, seafood cultivation, and consumption.  相似文献   

11.
The effects of interferon-α and interferon-γ on collagen synthesis and mRNA levels of type I and type III procollagens were studied in skin fibroblasts cultured from affected and unaffected skin sites of two patients with localized scleroderma (morphea). Both scleroderma cell lines exhibited elevated type I and type III procollagen mRNA levels to account for the increased procollagen synthesis, when compared to the unaffected controls. Interferon-γ treatment resulted in a dose-dependent reduction in collagen synthesis and procollagen mRNA levels in scleroderma fibroblasts. A 72-h exposure to interferon-γ reduced procollagen mRNA levels in the scleroderma fibroblast lines to the levels exhibited by the unaffected control fibroblasts. The suppressive effect of interferon-α on procollagen mRNA levels was somewhat weaker than that of interferon-γ. The results suggest potential use of interferon-γ in treatment and prevention of human fibrotic conditions.  相似文献   

12.
Alzheimer's disease (AD) as a neurodegenerative brain disorder is a devastating pathology leading to disastrous cognitive impairments and dementia, associated with major social and economic costs to society. Iron can catalyze damaging free radical reactions. With age, iron accumulates in brain frontal cortex regions and may contribute to the risk of AD. In this communication, we investigated the age-related brain iron load changes in the frontal cortex of 6- and 12-month-old C57BL/6J (C57) and APPswe/PS1ΔE9 (APP/PS1) double transgenic mouse by using graphite furnace atomic absorption spectrometry (GFAAS) and Perls’ reaction. In the present study, we also evaluated the age-related changes of DMT1 and FPN1 by using Western blot and qPCR. We found that compared with 6-month-old APP/PS1 mice and the 12-month-old C57 mice, the 12-month-old APP/PS1 mice had increased iron load in the frontal cortex. The levels of DMT1 were significantly increased and the FPN1 were significantly reduced in the frontal cortex of the 12-month-old APP/PS1 mice than that in the 6-month-old APP/PS1 mice and 12-month-old C57 mice. We conclude that in AD damage occurs in conjunction with iron accumulation, and the brain iron load associated with loss control of the brain iron metabolism related protein DMT1 and FPN1 expressions.  相似文献   

13.
The activities of monoamine oxidase (MAO), cathechol-O-methyltransferase (COMT) and -aminobutyric acid transaminase (GABA-T) were measured in primary cultures from newborn rat cultivated from 6 different brain regions. These primary cultures contained mostly astroglial cells, evaluated by the presence of the glial fibrillary acidic protein (GFAp, -albumin) and the S-100 protein. The enzyme activities in the corresponding brain areas from adult rat were also quantified. MAO activities were on the same level in 14-day old cultures and in adult rat brain homogenates, with significantly lower values in brain stem as compared to the other brain regions examined. COMT activities were on a higher level in the cultures than in adult rat brain homogenates. Astroglial cells from hippocampus were found to have the highest and those from brain stem the lowest COMT-activities. GABA-T activities were lower in the cultures than in adult rat homogenates. No significant differences were seen in the various astroglial cultures. Accumulation of [3H]dopamine and [3H]-aminobutyric acid (GABA) visualized by autoradiography showed only a slight uptake of dopamine in comparison with the uptake of GABA. It is concluded that astroglial cells in culture have enzymatic properties similar to those of astroglial cells in different brain regions of adult rat brain. Studies are in progress to evaluate if the regional heterogeneity observed among cultivated astroglial cells is affected by in vivo differentiation until cultivation and/or time in culture.  相似文献   

14.
15.
Lysine, an essential amino acid is catabolized in brain through only the pipecolic acid pathway. During the formation of pipecolic acid, -deamination of lysine, and the formation of the -keto acid as well as its cyclized product are pre-requisites. The enzyme mediated -deamination of L-lysine and the formation of the -keto acid and the cyclized product are not demonstrated so far. Both lysine and pipecolic acid are known to increase in brain under the conditions of fasting, studies were therefore undertaken to identify the enzyme responsible for the -deamination of L-lysine in the brain tissue of mice which were fasted. The detection of the -keto acid of L-lysine, -keto--amino caproic acid and its cyclized product, 1-piperidine-2-carboxylate was facilitated by the use of L-[U-14-C]-lysine as the substrate. The quantitation of the radioactivity in reaction products was done after separation by ion exchange chromatographic methods. The formation of the -keto acid was enzyme mediated, the -keto acid formed was established by reaction with N-methyl benzothiazolinone hydrazone hydrochloride. The cyclized product was accounted in a fraction which matched the resolution of authentic pipecolic acid on the Dowex column, and the cyclized product was confirmed by spectrophotometry. The hitherto undemonstrated -amino deaminating enzyme of L-lysine in brain tissue, the -keto acid of L-lysine and its cyclized product in a mammalian system could thus be demonstrated in the present study. These findings confirm the involvement of L-lysine oxidase/L-amino acid oxidase in the formation of pipecolic acid from L-lysine.  相似文献   

16.
Abnormal glucose metabolism in the brain is recognized to be associated with cognitive decline. Because grapes are rich in polyphenols that produce antioxidative and blood sugar-lowering effects, we investigated how grape consumption affects the expression and/or phosphorylation of neurodegeneration-related brain proteins in aged rats fed a high-fructose–high-fat (HFHF) diet. Wistar rats were maintained on the HFHF diet from the age of 8 weeks to 66 weeks, and then on an HFHF diet containing either 3% or 6% grape powder as an intervention for 12 weeks. Western blotting was performed to measure the expression/phosphorylation levels of several cortical and hippocampal proteins, including amyloid precursor protein (APP), tau, phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), receptor for advanced glycation end products (RAGEs), erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF). Inclusion of up to 6% grape powder in the diet markedly reduced RAGE expression and tau hyperphosphorylation, but upregulated the expression of Nrf2 and BDNF, as well as the phosphorylation of PI3K and ERK, in the brain tissues of aged rats fed the HFHF diet. Thus, grape powder consumption produced beneficial effects in HFHF-diet-fed rats, exhibiting the potential to ameliorate changes in neurodegeneration-related proteins in the brain.  相似文献   

17.
Thromboxane B2 and 6-keto-PGF (6KPGF), the major stable metabolites of thromboxane and prostacyclin, are present in the CNS, where they appear to be mainly produced within and/or acting upon the vascular district. Their concentrations are of few pg/mg protein in rat brain cortex of animals sacrificed by microwave (MW) radiation, procedure which inactivates tissue enzymes and allows the determination of endogenous “basal” levels of eicosanoids. Levels of 6KPGF and especially those of TxB2 increase several fold over the basal values in brain cortex of animals sacrificed by decapitation followed by a few minute interval before analysis (post-decapitation ischemia, PDI). Pretreatment of animals with the vasoactive drug papaverine, resulted in elevation of brain basal levels of 6KPGF and with the carbochromene derivartive AD6 in reduction of basal levels of TxB2, whereas the calcium antagonist nifedipine and dipyridamole did not modify basal levels of the two eicosanoids. Treatments with papaverine and AD6 reduced the accumulation of TxB2 and enhanced that of 6KPGF occurring after PDI, to different extents, both resulting, however, in reduction of the TxB2/6KPGF ratio. Nifedipine instead, decreased the release of both eicosanoids and resulted in elevation of the TxB2/6KPGF ratio, whereas dipyridamole had no effect. In conclusion, the evaluation of the overall effects of drug treatments on the TxB2/6KPGF ratio in cerebral tissue, provided useful informations on the pharmacological modulation of vascular eicosanoids in this district.  相似文献   

18.
The plant growth substance N6-(2-isopentenyl) adenine (i6Ade) significantly inhibits the rates of ethanol oxidation and acetaldehyde reduction in vitro by cell-free extracts of Zymomonas mobilis and of an Escherichia coli recombinant strain, containing the Z. mobilis adhB gene. The two-substrate kinetics of ethanol oxidation (forward) is affected by increasing values of dissociation constants for coenzyme and coenzyme —enzyme complexes in the presence of i6Ade, whereas the reaction maximum velocity (V m) remains unchanged and reflects the competitive type of inhibition. Changes of the kinetic constants of acetaldehyde reduction (back) are similar, except the increasing value of V m and correspond to the CIS (competitive inhibition and stimulation) type of inhibition. The estimated values of inhibition constants of the forward and back reactions are 0.39 ± 0.05 mM and 0.19 ± 0.06 mM, respectively.  相似文献   

19.
20.
Blood vessels from rats with various forms of hypertension (spontaneous, induced renovascular and DOCA saline) have been shown to produce increased amounts of PCI2 (1 – 5). To investigate whether this ability may be related to a local pressure effect we have measured production of a ‘PGI2-like’ substance by rat abdominal aortas in which pressure had been lowered mechanically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号