首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zheng Z  Ma C  Gao C  Li F  Qin J  Zhang H  Wang K  Xu P 《PloS one》2011,6(4):e19030

Background

Phenyllactic acid (PLA), a novel antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi, can be produced by many microorganisms, especially lactic acid bacteria. However, the concentration and productivity of PLA have been low in previous studies. The enzymes responsible for conversion of phenylpyruvic acid (PPA) into PLA are equivocal.

Methodology/Principal Findings

A novel thermophilic strain, Bacillus coagulans SDM, was isolated for production of PLA. When the solubility and dissolution rate of PPA were enhanced at a high temperature, whole cells of B. coagulans SDM could effectively convert PPA into PLA at a high concentration (37.3 g l−1) and high productivity (2.3 g l−1 h−1) under optimal conditions. Enzyme activity staining and kinetic studies identified NAD-dependent lactate dehydrogenases as the key enzymes that reduced PPA to PLA.

Conclusions/Significance

Taking advantage of the thermophilic character of B. coagulans SDM, a high yield and productivity of PLA were obtained. The enzymes involved in PLA production were identified and characterized, which makes possible the rational design and construction of microorganisms suitable for PLA production with metabolic engineering.  相似文献   

2.
C Gao  J Qiu  C Ma  P Xu 《PloS one》2012,7(7):e40755

Background

The platform chemical lactate is currently produced mainly through the fermentation of sugars presented in biomass. Besides the synthesis of biodegradable polylactate, lactate is also viewed as a feedstock for the green chemistry of the future. Pyruvate, another important platform chemical, can be produced from lactate through biocatalysis.

Methodology/Principal Findings

It was established that whole cells of Pseudomonas stutzeri SDM catalyze lactate oxidation with lactate-induced NAD-independent lactate dehydrogenases (iLDHs) through the inherent electron transfer chain. Unlike the lactate oxidation processes observed in previous reports, the mechanism underlying lactate oxidation described in the present study excluded the costliness of the cofactor regeneration step and production of the byproduct hydrogen peroxide.

Conclusions/Significance

Biocatalysis conditions were optimized by using the cheap dl-lactate as the substrate and whole cells of the lactate-utilizing P. stutzeri SDM as catalyst. Under optimal conditions, the biocatalytic process produced pyruvate at a high concentration (48.4 g l−1) and a high yield (98%). The bioconversion system provides a promising alternative for the green production of pyruvate.  相似文献   

3.
Sweet sorghum juice was a cheap and renewable resource, and also a potential carbon source for the fermentation production of lactic acid (LA) by a lactic acid bacterium. One newly isolated strain Lactobacillus salivarius CGMCC 7.75 showed the ability to produce the highest yield and optical purity of LA from sweet sorghum juice. Studies of feeding different concentrations of sweet sorghum juice and nitrogen source suggested the optimal concentrations of fermentation were 325 ml l−1 and 20 g l−1, respectively. This combination produced 142.49 g l−1 LA with a productivity level of 0.90 g of LA per gram of sugars consumed. The results indicated the high LA concentration achieved using L. salivarius CGMCC 7.75 not only gives cheap industrial product, but also broaden the application of sweet sorghum.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-013-0377-0) contains supplementary material, which is available to authorized users.  相似文献   

4.

Aim

We previously found that chronic tuberous sclerosis protein 2 (TSC2) deletion induces activation of mammalian target of rapamycin Complex 1 (mTORC1) and leads to hypertrophy of pancreatic beta cells from pancreatic beta cell-specific TSC2 knockout (βTSC2−/−) mice. The present study examines the effects of TSC2 ablation on insulin secretion from pancreatic beta cells.

Methods

Isolated islets from βTSC2−/− mice and TSC2 knockdown insulin 1 (INS-1) insulinoma cells treated with small interfering ribonucleic acid were used to investigate insulin secretion, ATP content and the expression of mitochondrial genes.

Results

Activation of mTORC1 increased mitochondrial DNA expression, mitochondrial density and ATP production in pancreatic beta cells of βTSC2−/− mice. In TSC2 knockdown INS-1 cells, mitochondrial DNA expression, mitochondrial density and ATP production were increased compared with those in control INS-1 cells, consistent with the phenotype of βTSC2−/− mice. TSC2 knockdown INS-1 cells also exhibited augmented insulin secretory response to glucose. Rapamycin inhibited mitochondrial DNA expression and ATP production as well as insulin secretion in response to glucose. Thus, βTSC2−/− mice exhibit hyperinsulinemia due to an increase in the number of mitochondria as well as enlargement of individual beta cells via activation of mTORC1.

Conclusion

Activation of mTORC1 by TSC2 ablation increases mitochondrial biogenesis and enhances insulin secretion from pancreatic beta cells.  相似文献   

5.

Background

Neurogenic inflammation plays a major role in the pathogenesis of inflammatory bowel disease (IBD). We examined the role of neuropeptide Y (NPY) and neuronal nitric oxide synthase (nNOS) in modulating colitis.

Methods

Colitis was induced by administration of dextran sodium sulphate (3% DSS) or streptomycin pre-treated Salmonella typhimurium (S.T.) in wild type (WT) and NPY (NPY−/−) knockout mice. Colitis was assessed by clinical score, histological score and myeloperoxidase activity. NPY and nNOS expression was assessed by immunostaining. Oxidative stress was assessed by measuring catalase activity, glutathione and nitrite levels. Colonic motility was assessed by isometric muscle recording in WT and DSS-treated mice.

Results

DSS/S.T. induced an increase in enteric neuronal NPY and nNOS expression in WT mice. WT mice were more susceptible to inflammation compared to NPY−/− as indicated by higher clinical & histological scores, and myeloperoxidase (MPO) activity (p<0.01). DSS-WT mice had increased nitrite, decreased glutathione (GSH) levels and increased catalase activity indicating more oxidative stress. The lower histological scores, MPO and chemokine KC in S.T.-treated nNOS−/− and NPY−/−/nNOS−/− mice supported the finding that loss of NPY-induced nNOS attenuated inflammation. The inflammation resulted in chronic impairment of colonic motility in DSS-WT mice. NPY –treated rat enteric neurons in vitro exhibited increased nitrite and TNF-α production.

Conclusions

NPY mediated increase in nNOS is a determinant of oxidative stress and subsequent inflammation. Our study highlights the role of neuronal NPY and nNOS as mediators of inflammatory processes in IBD.  相似文献   

6.
7.
A Rangiani  Z Cao  Y Sun  Y Lu  T Gao  B Yuan  A Rodgers  C Qin  M Kuro-O  JQ Feng 《PloS one》2012,7(8):e42329

Purpose

Dmp1 (dentin matrix protein1) null mice (Dmp1−/−) display hypophosphatemic rickets with a sharp increase in fibroblast growth factor 23 (FGF23). Disruption of Klotho (the obligatory co-receptor of FGF23) results in hyperphosphatemia with ectopic calcifications formed in blood vessels and kidneys. To determine the role of DMP1 in both a hyperphosphatemic environment and within the ectopic calcifications, we created Dmp1/Klotho compound deficient (Dmp1−/−kl/kl) mice.

Procedures

A combination of TUNEL, immunohistochemistry, TRAP, von Kossa, micro CT, bone histomorphometry, serum biochemistry and Scanning Electron Microscopy techniques were used to analyze the changes in blood vessels, kidney and bone for wild type control, Dmp1−/−, Klotho deficient (kl/kl) and Dmp1−/−kl/kl animals.

Findings

Interestingly, Dmp1−/−kl/kl mice show a dramatic improvement of rickets and an identical serum biochemical phenotype to kl/kl mice (extremely high FGF23, hyperphosphatemia and reduced parathyroid hormone (PTH) levels). Unexpectedly, Dmp1−/−kl/kl mice presented elevated levels of apoptosis in osteocytes, endothelial and vascular smooth muscle cells in small and large blood vessels, and within the kidney as well as dramatic increase in ectopic calcification in all these tissues, as compared to kl/kl.

Conclusion

These findings suggest that DMP1 has an anti-apoptotic role in hyperphosphatemia. Discovering this novel protective role of DMP1 may have clinical relevance in protecting the cells from apoptosis in high-phosphate environments as observed in chronic kidney disease (CKD).  相似文献   

8.

Background and Aims

Floral thermogenesis occurs in at least 12 families of ancient seed plants. Some species show very high rates of respiration through the alternative pathway, and some are thermoregulatory, with increasing respiration at decreasing ambient temperature. This study assesses the intensity and regulation of respiration in three species of African Hydnora that represent the Hydnoraceae, an unusual family of holoparasitic plants from arid environments.

Methods

Long-term respirometry (CO2 production) and thermometry were carried out on intact flowers of H. africana, H. abyssinica and H. esculenta in the field, and short-term measurements were made on floral parts during the protogynous flowering sequence.

Key Results

For H. africana, there was no temperature elevation in either the osmophores or the gynoecial chamber in any phase, and mass-specific respiration rates of the flower parts were low (maximum 8·3 nmol CO2 g−1 s−1 in osmophore tissue). Respiration tracked ambient and floral temperatures, eliminating the possibility of the inverse relationship expected in thermoregulatory flowers. Hydnora abyssinica flowers had higher respiration (maximum 27·5 nmol g−1 s−1 in the osmophores) and a slight elevation of osmophore temperature (maximum 2·8 °C) in the female stage. Respiration by gynoecial tissue was similar to that of osmophores in both species, but there was no measurable elevation of gynoecial chamber temperature. Gynoecial chamber temperature of H. esculenta could reach 3·8 °C above ambient, but there are no respiration data available. Antheral tissue respiration was maximal in the male phase (4·8 nmol g−1 s−1 in H. africana and 10·3 nmol g−1 s−1 in H. abyssinica), but it did not raise the antheral ring temperature, which showed that thermogenesis is not a by-product of pollen maturation or release.

Conclusions

The exceptionally low thermogenesis in Hydnora appears to be associated with scent production and possibly gynoecial development, but has little direct benefit to beetle pollinators.Key words: Pollination biology, Hydnora, thermogenesis, respiration rate, temperature, flowers, insects  相似文献   

9.

Background

Programmed Death-1 (PD-1; CD279) receptor molecule is widely believed to be a negative regulator predominantly expressed by exhausted/activated mouse T cells. Upon interaction with its ligands, PD-L1 and PD-L2, PD-1 inhibits activation of T cells and cytokine production, which has been documented in various viral and fungal infections as well as in vitro studies. Therefore, inhibition of T cell responses by PD-1 resulted in disease resistance in a variety of mouse infection models studied heretofore.

Methodology/Principal Findings

Here, we report that PD-1 deficient (PD-1−/−) mice infected with Mycobacterium tuberculosis (M. tb) H37Rv by the aerosol route have increased susceptibility as compared with their wild type littermates. Surprisingly, M. tb antigen-specific T cell proliferation was dramatically reduced in PD-1 deficient animals compared with wild-type littermates, and this was due to increased numbers of regulatory T cells (Tregs) and recruitment of mesenchymal stem cells. Furthermore, PD-1−/− mice exhibited decreases in the autophagy-induced LC3-B marker protein in macrophages.

Conclusions/Significance

Our findings suggest that PD-1 does not play an inhibitory role during M. tb infection and instead promotes mycobacterial clearance in mice.  相似文献   

10.
11.
Sahara M  Sata M  Morita T  Hirata Y  Nagai R 《PloS one》2012,7(3):e33367

Background

An antianginal KATP channel opener nicorandil has various beneficial effects on cardiovascular systems; however, its effects on pulmonary vasculature under pulmonary arterial hypertension (PAH) have not yet been elucidated. Therefore, we attempted to determine whether nicorandil can attenuate monocrotaline (MCT)-induced PAH in rats.

Materials and Methods

Sprague-Dawley rats injected intraperitoneally with 60 mg/kg MCT were randomized to receive either vehicle; nicorandil (5.0 mg·kg−1·day−1) alone; or nicorandil as well as either a KATP channel blocker glibenclamide or a nitric oxide synthase (NOS) inhibitor N ω-nitro-l-arginine methyl ester (l-NAME), from immediately or 21 days after MCT injection. Four or five weeks later, right ventricular systolic pressure (RVSP) was measured, and lung tissue was harvested. Also, we evaluated the nicorandil-induced anti-apoptotic effects and activation status of several molecules in cell survival signaling pathway in vitro using human umbilical vein endothelial cells (HUVECs).

Results

Four weeks after MCT injection, RVSP was significantly increased in the vehicle-treated group (51.0±4.7 mm Hg), whereas it was attenuated by nicorandil treatment (33.2±3.9 mm Hg; P<0.01). Nicorandil protected pulmonary endothelium from the MCT-induced thromboemboli formation and induction of apoptosis, accompanied with both upregulation of endothelial NOS (eNOS) expression and downregulation of cleaved caspase-3 expression. Late treatment with nicorandil for the established PAH was also effective in suppressing the additional progression of PAH. These beneficial effects of nicorandil were blocked similarly by glibenclamide and l-NAME. Next, HUVECs were incubated in serum-free medium and then exhibited apoptotic morphology, while these changes were significantly attenuated by nicorandil administration. Nicorandil activated the phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) pathways in HUVECs, accompanied with the upregulation of both eNOS and Bcl-2 expression.

Conclusions

Nicorandil attenuated MCT-induced vascular endothelial damage and PAH through production of eNOS and anti-apoptotic factors, suggesting that nicorandil might have a promising therapeutic potential for PAH.  相似文献   

12.

Background & Aims

Non-alcoholic steatohepatitis (NASH) is characterized by steatosis and inflammation, which can further progress into fibrosis and cirrhosis. Recently, we demonstrated that combined deletion of the two main scavenger receptors, CD36 and macrophage scavenger receptor 1 (MSR1), which are important for modified cholesterol-rich lipoprotein uptake, reduced NASH. The individual contributions of these receptors to NASH and the intracellular mechanisms by which they contribute to inflammation have not been established. We hypothesize that CD36 and MSR1 contribute independently to the onset of inflammation in NASH, by affecting intracellular cholesterol distribution inside Kupffer cells (KCs).

Methods & Results

Ldlr−/− mice were transplanted with wild-type (Wt), Cd36−/− or Msr1−/− bone marrow and fed a Western diet for 3months. Cd36−/−- and Msr1−/−- transplanted (tp) mice showed a similar reduction in hepatic inflammation compared to Wt-tp mice. While the total amount of cholesterol inside KCs was similar in all groups, KCs of Cd36−/−- and Msr1−/−-tp mice showed increased cytoplasmic cholesterol accumulation, while Wt-tp mice showed increased lysosomal cholesterol accumulation.

Conclusion

CD36 and MSR1 contribute similarly and independently to the progression of inflammation in NASH. One possible explanation for the inflammatory response related to expression of these receptors could be abnormal cholesterol trafficking in KCs. These data provide a new basis for prevention and treatment of NASH.  相似文献   

13.

Purpose

Milk fat globule-epidermal growth factor-factor VIII (MFGE8) is necessary for diurnal outer segment phagocytosis and promotes VEGF-dependent neovascularization. The prevalence of two single nucleotide polymorphisms (SNP) in MFGE8 was studied in two exsudative or “wet” Age-related Macular Degeneration (AMD) groups and two corresponding control groups. We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice.

Methods

The distribution of the SNP (rs4945 and rs1878326) of MFGE8 was analyzed in two groups of patients with “wet” AMD and their age-matched controls from Germany and France. MFGE8-expressing cells were identified in Mfge8 +/− mice expressing ß-galactosidase. Aged Mfge8 +/− and Mfge8 −/− mice were studied by funduscopy, histology, electron microscopy, scanning electron microscopy of vascular corrosion casts of the choroid, and after laser-induced CNV.

Results

rs1878326 was associated with AMD in the French and German group. The Mfge8 promoter is highly active in photoreceptors but not in retinal pigment epithelium cells. Mfge8−/− mice did not differ from controls in terms of fundus appearance, photoreceptor cell layers, choroidal architecture or laser-induced CNV. In contrast, the Bruch''s membrane (BM) was slightly but significantly thicker in Mfge8−/− mice as compared to controls.

Conclusions

Despite a reproducible minor increase of rs1878326 in AMD patients and a very modest increase in BM in Mfge8−/− mice, our data suggests that MFGE8 dysfunction does not play a critical role in the pathogenesis of AMD.  相似文献   

14.

Background

Adipose tissue inflammation fuels the metabolic syndrome. We recently reported that CD40L – an established marker and mediator of cardiovascular disease – induces inflammatory cytokine production in adipose cells in vitro. Here, we tested the hypothesis that CD40L deficiency modulates adipose tissue inflammation in vivo.

Methodology/Principal Findings

WT or CD40L−/− mice consumed a high fat diet (HFD) for 20 weeks. Inflammatory cell recruitment was impaired in mice lacking CD40L as shown by a decrease of adipose tissue macrophages, B-cells, and an increase in protective T-regulatory cells. Mechanistically, CD40L-deficient mice expressed significantly lower levels of the pro-inflammatory chemokine MCP-1 both, locally in adipose tissue and systemically in plasma. Moreover, levels of pro-inflammatory IgG-antibodies against oxidized lipids were reduced in CD40L−/− mice. Also, circulating low-density lipoproteins and insulin levels were lower in CD40L−/− mice. However, CD40L−/− mice consuming HFD were not protected from the onset of diet-induced obesity (DIO), insulin resistance, and hepatic steatosis, suggesting that CD40L selectively limits the inflammatory features of diet-induced obesity rather than its metabolic phenotype. Interestingly, CD40L−/− mice consuming a low fat diet (LFD) showed both, a favorable inflammatory and metabolic phenotype characterized by diminished weight gain, improved insulin tolerance, and attenuated plasma adipokine levels.

Conclusion

We present the novel finding that CD40L deficiency limits adipose tissue inflammation in vivo. These findings identify CD40L as a potential mediator at the interface of cardiovascular and metabolic disease.  相似文献   

15.
Ren Y  Liu B  Feng Y  Shu L  Cao X  Karaplis A  Goltzman D  Miao D 《PloS one》2011,6(7):e23060

Background

Although the capacity of exogenous PTH1-34 to enhance the rate of bone repair is well established in animal models, our understanding of the mechanism(s) whereby PTH induces an anabolic response during skeletal repair remains limited. Furthermore it is unknown whether endogenous PTH is required for fracture healing and how the absence of endogenous PTH would influence the fracture-healing capacity of exogenous PTH.

Methodology/Principal Findings

Closed mid-diaphyseal femur fractures were created and stabilized with an intramedullary pin in 8-week-old wild-type and Pth null (Pth −/−) mice. Mice received daily injections of vehicle or of PTH1-34 (80 µg/kg) for 1–4 weeks post-fracture, and callus tissue properties were analyzed at 1, 2 and 4 weeks post-fracture. Cartilaginous callus areas were reduced at 1 week post-fracture, but were increased at 2 weeks post-fracture in vehicle-treated and PTH-treated Pth −/− mice compared to vehicle-treated and PTH-treated wild-type mice respectively. The mineralized callus areas, bony callus areas, osteoblast number and activity, osteoclast number and surface in callus tissues were all reduced in vehicle-treated and PTH-treated Pth −/− mice compared to vehicle-treated and PTH-treated wild-type mice, but were increased in PTH-treated wild-type and Pth −/− mice compared to vehicle-treated wild-type and Pth −/− mice.

Conclusions/Significance

Absence of endogenous PTH1-84 impedes bone fracture healing. Exogenous PTH1-34 can act in the absence of endogenous PTH but callus formation, including accelerated endochondral bone formation and callus remodeling as well as mechanical strength of the bone are greater when endogenous PTH is present. Results of this study suggest a complementary role for endogenous PTH1-84 and exogenous PTH1-34 in accelerating fracture healing.  相似文献   

16.

Background

The demand for lactic acid has been increasing considerably because of its use as a monomer for the synthesis of polylactic acid (PLA), which is a promising and environment-friendly alternative to plastics derived from petrochemicals. Optically pure l-lactic acid is essential for polymerization of PLA. The high fermentation cost of l-lactic acid is another limitation for PLA polymers to compete with conventional plastics.

Methodology/Principal Findings

A Bacillus sp. strain 2–6 for production of l-lactic acid was isolated at 55°C from soil samples. Its thermophilic characteristic made it a good lactic acid producer because optically pure l-lactic acid could be produced by this strain under open condition without sterilization. In 5-liter batch fermentation of Bacillus sp. 2–6, 118.0 g/liter of l-lactic acid with an optical purity of 99.4% was obtained from 121.3 g/liter of glucose. The yield was 97.3% and the average productivity was 4.37 g/liter/h. The maximum l-lactic acid concentration of 182.0 g/liter was obtained from 30-liter fed-batch fermentation with an average productivity of 3.03 g/liter/h and product optical purity of 99.4%.

Conclusions/Significance

With the newly isolated Bacillus sp. strain 2–6, high concentration of optically pure l-lactic acid could be produced efficiently in open fermentation without sterilization, which would lead to a new cost-effective method for polymer-grade l-lactic acid production from renewable resources.  相似文献   

17.

Background and Aims

The resurgence of malaria, particularly in the developing world, is considerable and exacerbated by the development of single-gene multi-drug resistances to chemicals such as chloroquinone. Drug therapies, as recommended by the World Health Organization, now include the use of antimalarial compounds derived from Artemisia annua – in particular, the use of artemisinin-based ingredients. Despite our limited knowledge of its mode of action or biosynthesis there is a need to secure a supply and enhance yields of artemisinin. The present study aims to determine how plant biomass can be enhanced while maximizing artemisinin concentration by understanding the plant''s nutritional requirements for nitrogen and potassium.

Methods

Experiments were carried out, the first with differing concentrations of nitrogen, at 6, 31, 56, 106, 206 or 306 mg L−1 being applied, while the other differing in potassium concentration (51, 153 or 301 mg L−1). Nutrients were supplied in irrigation water to plants in pots and after a growth period biomass production and leaf artemisinin concentration were measured. These data were used to determine optimal nutrient requirements for artemisinin yield.

Key Results

Nitrogen nutrition enhanced plant nitrogen concentration and biomass production successively up to 106 mg N L−1 for biomass and 206 mg N L−1 for leaf nitrogen; further increases in nitrogen had no influence. Artemisinin concentration in dried leaf material, measured by HPLC mass spectroscopy, was maximal at a nitrogen application of 106 mg L−1, but declined at higher concentrations. Increasing potassium application from 51 to 153 mg L−1 increased total plant biomass, but not at higher applications. Potassium application enhanced leaf potassium concentration, but there was no effect on leaf artemisinin concentration or leaf artemisinin yield.

Conclusions

Artemisinin concentration declined beyond an optimal point with increasing plant nitrogen concentration. Maximization of artemisinin yield (amount per plant) requires optimization of plant biomass via control of nitrogen nutrition.Key words: Artemisia, fertigation, malaria, nitrogen, nutrition, potassium  相似文献   

18.
Sadik CD  Kim ND  Alekseeva E  Luster AD 《PloS one》2011,6(10):e26342

Objective

To investigate the role of IL-17RA signaling in the effector phase of inflammatory arthritis using the K/BxN serum-transfer model.

Methods

Wild-type and Il17ra−/− mice were injected with serum isolated from arthritic K/BxN mice and their clinical score was recorded daily. Mice were also harvested on days 12 and 21 and ankles were analyzed for cytokine and chemokine mRNA expression by qPCR on day 12 and for bone and cartilage erosions by histology on day 21, respectively. The induction of cytokine and chemokine expression levels by IL-17A in synovial-like fibroblasts was also analyzed using qPCR.

Results

Il17ra−/− mice were partially protected from clinical signs of arthritis and had markedly fewer cartilage and bone erosions. The expression of several pro-inflammatory mediators, including the chemokines KC/CXCL1, MIP-2/CXCL2, LIX/CXCL5 MIP-1γ/CCL9, MCP-3/CCL7, MIP-3α/CCL20, the cytokines IL-1β, IL-6, RANKL and the matrix metalloproteinases MMP2, MMP3, and MMP13 were decreased in the ankles of Il17ra−/− mice compared to wild-type mice. Many of these proinflammatory genes attenuated in the ankles of Il17ra−/− mice were shown to be directly induced by IL-17A in synovial fibroblasts in vitro.

Conclusions

IL-17RA signaling plays a role as an amplifier of the effector phase of inflammatory arthritis. This effect is likely mediated by direct activation of synovial fibroblasts by IL-17RA to produce multiple inflammatory mediators, including chemokines active on neutrophils. Therefore, interrupting IL-17RA signaling maybe a promising pharmacological target for the treatment of inflammatory arthritis.  相似文献   

19.

Background

The identification of strategies to improve mutant CFTR function remains a key priority in the development of new treatments for cystic fibrosis (CF). Previous studies demonstrated that the K+ channel opener 1-ethyl-2-benzimidazolone (1-EBIO) potentiates CFTR-mediated Cl secretion in cultured cells and mouse colon. However, the effects of 1-EBIO on wild-type and mutant CFTR function in native human colonic tissues remain unknown.

Methods

We studied the effects of 1-EBIO on CFTR-mediated Cl secretion in rectal biopsies from 47 CF patients carrying a wide spectrum of CFTR mutations and 57 age-matched controls. Rectal tissues were mounted in perfused micro-Ussing chambers and the effects of 1-EBIO were compared in control tissues, CF tissues expressing residual CFTR function and CF tissues with no detectable Cl secretion.

Results

Studies in control tissues demonstrate that 1-EBIO activated CFTR-mediated Cl secretion in the absence of cAMP-mediated stimulation and potentiated cAMP-induced Cl secretion by 39.2±6.7% (P<0.001) via activation of basolateral Ca2+-activated and clotrimazole-sensitive KCNN4 K+ channels. In CF specimens, 1-EBIO potentiated cAMP-induced Cl secretion in tissues with residual CFTR function by 44.4±11.5% (P<0.001), but had no effect on tissues lacking CFTR-mediated Clconductance.

Conclusions

We conclude that 1-EBIO potentiates Clsecretion in native CF tissues expressing CFTR mutants with residual Cl channel function by activation of basolateral KCNN4 K+ channels that increase the driving force for luminal Cl exit. This mechanism may augment effects of CFTR correctors and potentiators that increase the number and/or activity of mutant CFTR channels at the cell surface and suggests KCNN4 as a therapeutic target for CF.  相似文献   

20.

Background

GP-BAR1, a member G protein coupled receptor superfamily, is a cell surface bile acid-activated receptor highly expressed in the ileum and colon. In monocytes, ligation of GP-BAR1 by secondary bile acids results in a cAMP-dependent attenuation of cytokine generation.

Aims

To investigate the role GP-BAR1 in regulating intestinal homeostasis and inflammation-driven immune dysfunction in rodent models of colitis.

Methods

Colitis was induced in wild type and GP-BAR1−/− mice by DSS and TNBS administration. Potential GP-BAR1 agonists were identified by in silico screening and computational docking studies.

Results

GP-BAR1−/− mice develop an abnormal morphology of colonic mucous cells and an altered molecular architecture of epithelial tight junctions with increased expression and abnormal subcellular distribution of zonulin 1 resulting in increased intestinal permeability and susceptibility to develop severe colitis in response to DSS at early stage of life. By in silico screening and docking studies we identified ciprofloxacin as a GP-BAR1 ligand. In monocytes, ciprofloxacin increases cAMP concentrations and attenuates TNFα release induced by TLR4 ligation in a GP-BAR1 dependent manner. Treating mice rendered colitic by TNBS with ciprofloxacin and oleanolic acid, a well characterized GP-BAR1 ligand, abrogates signs and symptoms of colitis. Colonic expression of GP-BAR1 mRNA increases in rodent models of colitis and tissues from Crohn''s disease patients. Flow cytometry analysis demonstrates that ≈90% of CD14+ cells isolated from the lamina propria of TNBS-treated mice stained positively for GP-BAR1.

Conclusions

GP-BAR1 regulates intestinal barrier structure. Its expression increases in rodent models of colitis and Crohn''s disease. Ciprofloxacin is a GP-BAR1 ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号